Advertisement

Journal of Computational Electronics

, Volume 7, Issue 3, pp 168–171 | Cite as

Parameter modeling for higher-order transport models in UTB SOI MOSFETs

  • Martin VasicekEmail author
  • Johann Cervenka
  • Martin Wagner
  • Markus Karner
  • Tibor Grasser
Article

Abstract

We present a two-dimensional tabularized higher-order transport model based on extracted parameters from a Subband Monte Carlo (SMC) simulator. Important effects like quantum confinement and surface roughness scattering are automatically taken into account. Device parameters like the electron temperature or the output characteristic of a SOI MOSFET are compared with the results obtained from models using bulk Monte Carlo (MC) data, where no quantization effects and no surface roughness scattering are considered.

Keywords

Subband Monte Carlo Schrödinger/Poisson solver Method of moments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sverdlov, V., et al.: Volume inversion mobility in SOI MOSFETs for different thin body orientations. Solid-State Electron. 51, 299 (2007) CrossRefGoogle Scholar
  2. 2.
    Lucci, H., et al.: Comparative analysis of basic transport properties in the inversion layer of bulk ans SOI MOSFETs: a Monte-Carlo study. In: Proc. ESSDERC, pp. 321–324 (2004) Google Scholar
  3. 3.
    Gamiz, F., et al.: Monte Carlo simulation of electron transport properties in extremely thin SOI MOSFET’s. Electron Devices, IEEE Trans. 45(5), 1122 (1998) CrossRefGoogle Scholar
  4. 4.
    Grasser, T., et al.: Nonparabolic macroscopic transport models for device simulation based on bulk Monte Carlo data. J. Appl. Phys. 97(9), 09371 (2005) CrossRefGoogle Scholar
  5. 5.
    Grasser, T., et al.: Advanced transport models for sub-micrometer devices. In: Proc. SISPAD, pp. 1–8 (2004) Google Scholar
  6. 6.
    Neinhüs, B., et al.:  A CPU efficient electron mobility model for MOSFET simulation with quantum corrected charge densities. In: Proc. ESSDERC, pp. 332–335 (2000) Google Scholar
  7. 7.
    Lundstrom, M.: Fundamentals of Carrier Transport X of Modular Series on Solid State Device. Addison-Wesley, Reading (1990) Google Scholar
  8. 8.
    Karlowatz, G., et al.: Full-band Monte Carlo analysis of electron transport in arbitrary strained silicon. In: Proc. SISPAD, pp. 600–604 (2006) Google Scholar
  9. 9.
    Karner, M., et al.: VSP – a multi-purpose Schrödinger–Poisson solver for TCAD applications. In: 11th IWCE, pp. 255–256 (2006) Google Scholar
  10. 10.
    Curatola, G., et al.: Detailed modeling of sub-100 nm MOSFETs based on Schrödinger DD per subband and experiments and evaluation of the performance gap to ballistic transport. Trans. Electron Devices 52(8), 1851 (2005) CrossRefGoogle Scholar
  11. 11.
    Grasser, T., Selberherr, S.: MINIMOS-NT 2.1 User’s Guide. Institute for Microelectronics TU Wien, Vienna (2004) Google Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Martin Vasicek
    • 1
    Email author
  • Johann Cervenka
    • 1
  • Martin Wagner
    • 1
  • Markus Karner
    • 1
  • Tibor Grasser
    • 1
  1. 1.Institute for MicroelectronicsTU WienViennaAustria

Personalised recommendations