Journal of Computational Electronics

, Volume 7, Issue 3, pp 390–393 | Cite as

Numerical simulation of electronic transport in zigzag-edged graphene nano-ribbon devices

  • Satofumi Souma
  • Matsuto Ogawa
  • Takahiro Yamamoto
  • Kazuyuki Watanabe
Article

Abstract

We present a numerical study of the current-voltage characteristics in zigzag-edged graphene nano-ribbon (Z-GNR) devices. Our calculations employing the non-equilibrium Green’s function method and the density-functional tight-binding method show that the Z-GNR with transverse symmetry can exhibit remarkable current saturation behavior in spite of the absence of the bandgap. We further demonstrate that the saturation current can be controlled by the additional doping in the channel region. The mechanism of such current saturation can be explained in terms of the symmetry of the wavefunctions corresponding to the conduction and the valence bands in Z-GNR.

Keywords

Quantum transport Non-equilibrium Green’s function Graphene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novoselov, K.S., et al.: Science 306, 666 (2004) CrossRefGoogle Scholar
  2. 2.
    Han, M.Y., et al.: Phys. Rev. Lett. 98, 206805 (2007) CrossRefGoogle Scholar
  3. 3.
    Özyilmaz, B., et al.: Phys. Rev. Lett. 99, 166804 (2007) CrossRefGoogle Scholar
  4. 4.
    Nakada, K., et al.: Phys. Rev. B 54, 17954 (1996) CrossRefGoogle Scholar
  5. 5.
    Fujita, M., et al.: J. Phys. Soc. Jpn. 65, 1920 (1996) CrossRefGoogle Scholar
  6. 6.
    Miyamoto, Y., Nakada, K., Fujita, M.: Phys. Rev. B 59, 9858 (1999) CrossRefGoogle Scholar
  7. 7.
    Miyamoto, Y., Nakada, K., Fujita, M.: Phys. Rev. B 60, 16211 (1999) CrossRefGoogle Scholar
  8. 8.
    Kobayashi, Y., et al.: Phys. Rev. 71, 193406 (2005) CrossRefGoogle Scholar
  9. 9.
    Wakabayashi, K., Sigrist, M.: Phys. Rev. Lett. 84, 3390 (2000) CrossRefGoogle Scholar
  10. 10.
    Wakabayashi, K., Fujita, M., Ajiki, H., Sigrist, M.: Phys. Rev. B 59, 8271 (1999) CrossRefGoogle Scholar
  11. 11.
    Wakabayashi, K.: Phys. Rev. B 64, 125428 (2001) CrossRefGoogle Scholar
  12. 12.
    Li, T.C., Lu, S.-P.: cond-mat/0609009 (2006) Google Scholar
  13. 13.
    Souma, S., Yamamoto, T., Watanabe, K.: E-J. Surf. Sci. Nanotech. 4, 78 (2006) CrossRefGoogle Scholar
  14. 14.
    Ouyang, Y., Yoon, Y., Guo, J.: cond-mat/0704.2261 (2007) Google Scholar
  15. 15.
    Guo, J., Yoon, Y., Ouyang, Y.: cond-mat/0705.3068 (2007) Google Scholar
  16. 16.
    Liang, G., et al.: cond-mat/0705.0556 (2007). Google Scholar
  17. 17.
    Okada, S., Oshiyama, A.: Phys. Rev. B 87, 146803 (2001) CrossRefGoogle Scholar
  18. 18.
    Kusakabe, K., Maruyama, M.: Phys. Rev. B 67, 092406 (2003) CrossRefGoogle Scholar
  19. 19.
    Son, Y.-W., Cohen, M.L., Louie, S.G.: Nature 444, 347 (2006) CrossRefGoogle Scholar
  20. 20.
    Taylor, J., Guo, H., Wang, J.: Phys. Rev. B 63, 245407 (2001) CrossRefGoogle Scholar
  21. 21.
    Brandbyge, M., et al.: Phys. Rev. B 65, 165401 (2002) CrossRefGoogle Scholar
  22. 22.
    Sankey, O., Niklewski, D.J.: Phys. Rev. B 40, 3979 (1989) CrossRefGoogle Scholar
  23. 23.
    Soler, J.M., et al.: J. Phys. Condens. Matter 14, 2745 (2002) CrossRefGoogle Scholar
  24. 24.
    Porezag, D., et al.: Phys. Rev. B 51, 12947 (1995) CrossRefGoogle Scholar
  25. 25.
    Elstner, M., et al.: Phys. Rev. B 58, 7260 (1998) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Satofumi Souma
    • 1
    • 2
  • Matsuto Ogawa
    • 1
  • Takahiro Yamamoto
    • 2
    • 3
  • Kazuyuki Watanabe
    • 2
    • 3
  1. 1.Department of Electronics and Electric EngineeringKobe UniversityKobeJapan
  2. 2.CRESTJapan Science and Technology AgencySaitamaJapan
  3. 3.Department of Physics, Faculty of ScienceTokyo University of ScienceTokyoJapan

Personalised recommendations