Advertisement

Journal of Computational Electronics

, Volume 7, Issue 3, pp 436–439 | Cite as

MC simulation of double-resonant-phonon depopulation THz QCLs for high operating temperatures

  • Christian Jirauschek
  • Paolo Lugli
Article

Abstract

We theoretically investigate the temperature performance of GaAs-based double-resonant-phonon depopulation THz quantum cascade lasers. Based on an ensemble Monte Carlo simulation including both carrier-phonon and carrier-carrier scattering, we evaluate the temperature dependence of the different carrier transport channels and identify the detrimental factors preventing high operating temperatures. As major detrimental effects, increased leakage from the upper laser level and a deteriorating depletion efficiency of the lower laser level is found for elevated temperatures.

Keywords

Monte Carlo simulation Terahertz source Quantum cascade laser 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Williams, B.S., et al.: Operation of THz quantum cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. Opt. Exp. 13(9), 3331 (2005) CrossRefGoogle Scholar
  2. 2.
    Williams, B.S., et al.: Terahertz quantum cascade lasers with double-resonant-phonon depopulation. Appl. Phys. Lett. 88, 261101 (2006) CrossRefGoogle Scholar
  3. 3.
    Compagnone, F., et al.: Monte Carlo simulation of electron dynamics in superlattice quantum cascade lasers. Appl. Phys. Lett. 80(6), 920 (2002) CrossRefGoogle Scholar
  4. 4.
    Manenti, M., et al.: Monte Carlo simulation of tunable mid-infrared emission from coupled Wannier-Stark ladders in semiconductor superlattices. Appl. Phys. Lett. 82(23), 4029 (2003) CrossRefGoogle Scholar
  5. 5.
    Köhler, R., et al.: Design and simulation of terahertz quantum cascade lasers. Appl. Phys. Lett. 79(24), 3920 (2001) CrossRefGoogle Scholar
  6. 6.
    Callebaut, H., et al.: Analysis of transport properties of tetrahertz quantum cascade lasers. Appl. Phys. Lett. 83(2), 207 (2003) CrossRefGoogle Scholar
  7. 7.
    Bonno, O., et al.: Modeling of electron–electron scattering in Monte Carlo simulation of quantum cascade lasers. J. Appl. Phys. 97, 043702 (2005) CrossRefGoogle Scholar
  8. 8.
    Jirauschek, C., et al.: Comparative analysis of resonant phonon THz quantum cascade lasers. J. Appl. Phys. 101, 086109 (2007) CrossRefGoogle Scholar
  9. 9.
    Iotti, R.C., Rossi, F.: Nature of charge transport in quantum-cascade lasers. Phys. Rev. Lett. 87(14), 146603 (2001) CrossRefGoogle Scholar
  10. 10.
    Lee, S.-C., et al.: Quantum mechanical wavepacket transport in quantum cascade laser structures. Phys. Rev. B 73, 245320 (2006) CrossRefGoogle Scholar
  11. 11.
    Jirauschek, C., Lugli, P.: Limiting factors for high temperature operation of THz quantum cascade lasers. Phys. Stat. Sol. (c) 5(1), 221 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  1. 1.Institute for NanoelectronicsTU MünchenMunichGermany

Personalised recommendations