Advertisement

Journal of Computational Electronics

, Volume 7, Issue 3, pp 305–308 | Cite as

Calculation of Fin width for bulk inversion in Si FinFET by applying supersymmetry

  • Razib ShishirEmail author
  • David Ferry
Article

Abstract

The transition from surface inversion to bulk inversion in a Si FinFET is investigated in this paper using supersymmetric quantum mechanics. A double quantum well potential, which is the supersymmetric partner of a harmonic oscillator potential, was chosen. The fraction of charge residing inside the bulk was calculated as a function of fin width and electron density. For any electron density, more charge resides in the bulk as the fin width decreases. On the other hand, for a fixed fin width, charges move to the surface as the electron density increases. It was found that in Si FinFET for the electron density of 3×1012 cm−2 bulk inversion occurs when the fin width is about 8 nm.

Keywords

FinFET Surface inversion Bulk inversion Supersymmetric quantum mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frank, D.J., et al.: Monte Carlo simulation of 30 nm dual-gate MOSFET: How short can Si go? In: IEDM Tech. Dig., pp. 553 (1992) Google Scholar
  2. 2.
    Hisamoto, D., Lee, W.-C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., King, C.-J., Bokor, J., Hu, C.: FinFET—A self-aligned double-gate MOSFET scalable beyond 20 nm. IEEE Trans. Electron. Dev. 47, 2320–2325 (2000) CrossRefGoogle Scholar
  3. 3.
    Doyle, B.S., et al.: High performance fully-depleted Tri-Gate CMOS transistors. IEEE Electron. Dev. Lett. 24, 263 (2003) CrossRefGoogle Scholar
  4. 4.
    Kavalieros, J., et al.: Tri-gate transistor architecture with high-K gate dielectrics, metal gates and strain engineering. In: VLSI Symp. Dig. Tech. Papers, p. 62 (2006) Google Scholar
  5. 5.
    Ramey, S.M., et al.: Implementation of surface roughness scattering in Monte Carlo modeling of thin SOI MOSFETs using the effective potential. IEEE Trans. Nanotech. 2, 110 (2003) CrossRefGoogle Scholar
  6. 6.
    Lundstrom, M.S.: Elementary scattering theory of the Si MOSFET. IEEE Electron. Dev. Lett. 18, 361 (1997) CrossRefGoogle Scholar
  7. 7.
    Sukumar, C.V.: Supersymmetric quantum mechanics of one-dimensional systems. J. Phys. A: Math. Gen. 18, 2917 (1985) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Shishir, R., Ferry, D.K.: J. Comput. Electron. (2008). doi: 10.1007/s10825-008-0205-7 zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  1. 1.Arizona State UniversityTempeUSA

Personalised recommendations