Journal of Computational Electronics

, Volume 7, Issue 3, pp 288–292 | Cite as

NEGF simulations of the effect of strain on scaled double gate nanoMOSFETs

NEGF simulations of the strain effect
  • Karol Kalna
  • Antonio Martinez
  • A. Svizhenko
  • M. P. Anantram
  • J. R. Barker
  • A. Asenov


The effect of biaxial strain on double gate (DG) nanoscaled Si MOSFET with channel lengths in the nanometre range is investigated using Non-Equilibrium Green’s Functions (NEGF) simulations. We have employed fully 2D NEGF simulations in order to answer the question at which body thickness the effects of strain is masked by the confinement impact. Following ITRS, we start with a 14 nm gate length DG MOSFET having a body thickness of 9 nm scaling the transistors to gate lengths of 10, 6 and 4 nm and body thicknesses of 6.1, 2.6 and 1.3 nm. The simulated I DV G characteristics show a 6% improvement in the on-current for the 14 nm gate length transistor mainly due to the energy separation of the Δ valleys. The strain effect separates the 2 fold from the 4 fold valleys thus keeping mostly operational transverse electron effective mass in the transport direction. However, in the device with an extreme body thickness of 1.3 nm, the strain effect has no more impact on the DG performance because the strong confinement itself produces a large energy separation of valleys.


Strained silicon Double gate MOSFETs Thin-body architecture Non-equilibrium Green’s functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ghani, T., et al.: IEDM Tech. Dig., 978–981 (2003) Google Scholar
  2. 2.
    Lee, M.L., Fitzgerald, E.A., Bulsara, M.T., Currie, M.T., Lochtefeld, A.: J. Appl. Phys. 97(28), 011101 (2005) CrossRefGoogle Scholar
  3. 3.
    Aubrey-Fortuna, V., Bournel, A., Dolfus, P., Galding-Restailleau, S.: Semicond. Sci. Technol. 4, 422–428 (2006) CrossRefGoogle Scholar
  4. 4.
    Bufler, F.M., Fichtner, W.: IEEE Trans. Electron Devices 50, 278–284 (2003) CrossRefGoogle Scholar
  5. 5.
    Singh, D.V., et al.: IEDM 2005 Tech. Dig. 511–514 (2005) Google Scholar
  6. 6.
    Rieger, M., Vogl, P.: Phys. Rev. B. 48, 14276–14287 (1993) CrossRefGoogle Scholar
  7. 7.
    Rideau, D., Feraille, M., Ciampolini, L., Minondo, M., Tavernier, C., Jaouen, H.: Phys. Rev. B 74, 195208 (2006) CrossRefGoogle Scholar
  8. 8.
    Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: J. Appl. Phys. 94, 1079–1095 (2003) CrossRefGoogle Scholar
  9. 9.
    Ernst, T., Cristoloveanu, S., Ghibaudo, G., Ouisse, T., Horiguchi, S., Ono, Y., Takahashi, Y., Murase, K.: IEEE Trans. Electron Devices 50, 830–838 (2003) CrossRefGoogle Scholar
  10. 10.
    Engquist, H.L., Anderson, P.W.: Phys. Rev. B 24, 1151–1154 (1981) CrossRefGoogle Scholar
  11. 11.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge Univ. Press, Cambridge (1995) Google Scholar
  12. 12.
    Eminente, S., Esseni, D., Palestri, P., Fiegna, C., Selmi, L., Sangiorgi, E.: IEEE Trans. Electron Devices 52, 2736–2743 (2005) CrossRefGoogle Scholar
  13. 13.
    Jin, S., Park, Y.J., Min, H.S.: Oldiges, P., Mayaram, K. (eds.) Proc. SISPAD 2006, Monterey, USA, 35–38 (2006) Google Scholar
  14. 14.
    Svizhenko, A., Anantram, M.P., Govindan, T.R., Biegel, B., Venugopal, R.: J. Appl. Phys. 91, 2343–2354 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Karol Kalna
    • 1
  • Antonio Martinez
    • 1
  • A. Svizhenko
    • 2
  • M. P. Anantram
    • 3
  • J. R. Barker
    • 1
  • A. Asenov
    • 1
  1. 1.Device Modelling GroupUniversity of GlasgowGlasgowScotland, UK
  2. 2.Silvaco International Inc.Santa ClaraUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations