Advertisement

Journal of Computational Electronics

, Volume 7, Issue 3, pp 128–131 | Cite as

Effect of strains on anisotropic material transport in copper interconnect structures under electromigration stress

  • Roberto Lacerda de OrioEmail author
  • Hajdin Ceric
  • Siegfried Selberherr
Article

Abstract

We analyzed the effect of strains on material transport in a typical dual damascene copper interconnect via under electromigration stress. The electromigration model incorporates all important driving forces for atom migration coupled with the solution of the electrical and thermal problems. Our approach differs from others by considering a diffusivity tensor in the transport equation taking into account the diffusion anisotropy generated by the applied strains. We have obtained off-diagonal components of the diffusivity tensor up to 30% of the diagonal ones and a different distribution of vacancies due to electromigration.

Keywords

Electromigration Interconnect Dual damascene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Black, J.R.: IEEE Trans. Electron. Dev. 16, 338 (1969) CrossRefGoogle Scholar
  2. 2.
    Rosenberg, R., Ohring, M.: J. Appl. Phys. 42, 5671 (1971) CrossRefGoogle Scholar
  3. 3.
    Blech, I.A., Herring, C.: J. Appl. Phys. 29, 131 (1976) Google Scholar
  4. 4.
    Blech, I.A.: J. Appl. Phys. 47, 1203 (1976) CrossRefGoogle Scholar
  5. 5.
    Blech, I.A., Tai, K.L.: Appl. Phys. Lett. 30, 387 (1976) CrossRefGoogle Scholar
  6. 6.
    Kirchheim, R.: Acta Metall. Mater. 40, 309 (1992) CrossRefGoogle Scholar
  7. 7.
    Korhonen, M.A., Børgesen, P., Tu, K.N., Li, C.-Y.: J. Appl. Phys. 73, 3790 (1993) CrossRefGoogle Scholar
  8. 8.
    Lloyd, J.R., Clement, J.J.: Thin Solid Films 262, 135 (1995) CrossRefGoogle Scholar
  9. 9.
    Lloyd, J.R., Arzt, E.: Symp. Proc. Mater. Reliab. Microelectron. II 265, 45 (1992) Google Scholar
  10. 10.
    Clement, J.J.: IEEE Trans. Dev. Mater. Relat. 1, 33 (2001) CrossRefGoogle Scholar
  11. 11.
    Sarychev, M.E., Zhitnikov, Yu.V., Borucki, L., Liu, C.L., Makhviladze, T.M.: J. Appl. Phys. 86, 3068 (1999) CrossRefGoogle Scholar
  12. 12.
    Sukharev, V.: In: Stress-Induced Phenomena in Metallization: 8th International Workshop. AIP Conference Proceedings (2005) Google Scholar
  13. 13.
    Rhee, S.H., Du, Y., Ho, P.S.: J. Appl. Phys. 93, 3926 (2003) CrossRefGoogle Scholar
  14. 14.
    Lloyd, J.R.: Semicond. Sci. Technol. 12, 1177 (1997) CrossRefGoogle Scholar
  15. 15.
    Dederichs, P.H., Schroeder, K.: Phys. Rev. B 17, 2524 (1978) CrossRefGoogle Scholar
  16. 16.
    Diebel, M., Dunham, S.T.: In: Proc. of Simulation of Semiconductor Process and Devices (SISPAD), p. 147 (2003) Google Scholar
  17. 17.
    Ceric, H., Hollauer, C.H., Selberherr, S.: In: Proc. of 13th Internation Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore, p. 359 (2006) Google Scholar
  18. 18.
    Ceric, H.: Numerical techniques in modern TCAD. Dissertation, Institute for Microelectronics, Vienna University of Technology (2005) Google Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Roberto Lacerda de Orio
    • 1
    Email author
  • Hajdin Ceric
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for MicroelectronicsTU WienViennaAustria

Personalised recommendations