Advertisement

Journal of Computational Electronics

, Volume 7, Issue 3, pp 332–336 | Cite as

Three-dimensional simulation of field emission triode structure using carbon-nanotube emitters

  • Yiming Li
  • Ta-Ching Yeh
Article

Abstract

Field emission (FE) triode arrays with the anodic aluminum oxide (AAO) template carbon nanotubes (CNTs) as the field emitters are successfully fabricated and analyzed. Both the experimental measurement and numerical calculation are conducted to examine the electron conduction properties of AAO-CNTs. Using a three-dimensional finite-difference time-domain particle-in-cell method, a set of Maxwell equations and Lorentz equation is solved self-consistently, where the FE current is computed with Fowler–Nordheim equation. We explore the FE characteristics of AAO-CNTs in the triode structure. After calibration with the measured data, we study the evolution of current density and the convergence of the electron beams on anode plate with different gate voltages, anode heights, and SiO2 thickness. The current density and focus performance maintain a trade-off relationship, where a larger current density accompanies more divergent electron beam.

Keywords

Carbon nanotubes Anodic aluminum oxide Field emission Three-dimensional simulation Finite-difference time-domain particle-in-cell method Current density Electron beam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saito, Y., Uemura, S.: Field emission from carbon nanotubes and its application to electron sources. Carbon 38, 169 (2000) CrossRefGoogle Scholar
  2. 2.
    Huh, Y., Lee, J.Y., Lee, J.H., Lee, T.J., Lyu, S.C., Lee, C.J.: Selective growth and field emission of vertically well-aligned carbon nanotubes on hole-patterned silicon substrates. Chem. Phys. Lett. 375, 388 (2003) CrossRefGoogle Scholar
  3. 3.
    Ito, F., Tomihari, Y., Okada, Y., Konuma, K., Okamoto, A.: Carbon-nanotube-based triode-field-emission displays using gated emitter structure. IEEE Electron Device Lett. 22, 426 (2001) CrossRefGoogle Scholar
  4. 4.
    Mei, X., Blumin, M., Kim, D., Wu, Z., Ruda, H.E.: Molecular beam epitaxial growth studies of ordered GaAs nanodot arrays using anodic alumina masks. J. Cryst. Growth 251, 253 (2003) CrossRefGoogle Scholar
  5. 5.
    Chen, P.-L., Kuo, C.-T.: Self-organized titanium oxide nanodot arrays by electrochemical anodization. Appl. Phys. Lett. 82, 2796 (2003) CrossRefGoogle Scholar
  6. 6.
    Lin, C.-C., Chang, K.-C., Pan, F.-M., Kuo, C.-T., Liu, M., Mo, C.-N.: Growth of carbon nanotube field emitters in the triode structure using anodic aluminum oxide as the template. Diam. Relat. Mater. 16, 1388 (2007) CrossRefGoogle Scholar
  7. 7.
    Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. McGraw-Hill, New York (1985) Google Scholar
  8. 8.
    Verboncoeur, J.P., Langdon, A.B., Gladd, N.T.: An object-oriented electromagnetic PIC code. Comput. Phys. Commun. 87, 199–211 (1995) CrossRefGoogle Scholar
  9. 9.
    Fowler, R.H., Nordheim, L.W.: Containing papers of a mathematical and physical character. R. Soc. Proc. A 119, 173–181 (1928) CrossRefGoogle Scholar
  10. 10.
    Stern, T.E., Gossling, B.S., Fowler, R.H.: Further studies in the emission of electrons from cold metals. R. Soc. Proc. A 124, 699–723 (1929) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  1. 1.Department of Communication EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations