Advertisement

Journal of Computational Electronics

, Volume 7, Issue 3, pp 363–366 | Cite as

Simulations of nanowire transistors: atomistic vs. effective mass models

  • Neophytos Neophytou
  • Abhijeet Paul
  • Mark S. Lundstrom
  • Gerhard Klimeck
Article

Abstract

The ballistic performance of electron transport in nanowire transistors is examined using a 10 orbital sp3d5s* atomistic tight-binding model for the description of the electronic structure, and the top-of-the-barrier semiclassical ballistic model for calculation of the transport properties of the transistors. The dispersion is self consistently computed with a 2D Poisson solution for the electrostatic potential in the cross section of the wire. The effective mass of the nanowire changes significantly from the bulk value under strong quantization, and effects such as valley splitting strongly lift the degeneracies of the valleys. These effects are pronounced even further under filling of the lattice with charge. The effective mass approximation is in good agreement with the tight binding model in terms of current–voltage characteristics only in certain cases. In general, for small diameter wires, the effective mass approximation fails.

Keywords

MOSFET Nanowire Dispersion Tight binding Ballistic transport Self-consistency sp3d5s* 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Semiconductor Industry Association: International Roadmap for Semiconductors. http://public.itrs.net/ (2005)
  2. 2.
    Klimeck, G., Oyafuso, F., Boykin, T.B., Bowen, R.C., von Allmen, P.: Comp. Model. Eng. Sci. 3(5), 601–642 (2002) MATHGoogle Scholar
  3. 3.
    Rahman, A., Guo, J., Datta, S., Lundstrom, M.: IEEE TED 50, 1853–1864 (2003) Google Scholar
  4. 4.
    Datta, S.: Quantum Transport: Atom to Transistor, 2nd edn. Cambridge University Press, Cambridge (2005) MATHGoogle Scholar
  5. 5.
    Zheng, Y., Rivas, C., Lake, R., Alam, K., Boykin, T., Klimeck, G.: IEEE TED 52, 1097–1103 (2005) Google Scholar
  6. 6.
    Niquet, Y.M., Lherbier, A., Quang, N.H., Fernandez-Serra, M.V., Blaze, X., Delerue, C.: Phys. Rev. B 73, 165319 (2006) CrossRefGoogle Scholar
  7. 7.
    Nehari, K., Cavasillas, N., Michelini, F., Bescond, M., Autran, J.L., Lannoo, M.: Appl. Phys. Lett. 90, 132112 (2007) CrossRefGoogle Scholar
  8. 8.
    Neophytou, N., Paul, A., Lundstrom, M.S., Klimeck, G.: SISPAD (2007) Google Scholar
  9. 9.
    Lee, S., Oyafuso, F., von Allmen, P., Klimeck, G.: Phys. Rev. B Condens. Matter 69(4), 045316–045316 (2004) Google Scholar
  10. 10.
    Bandstructure lab on nanoHUB.org. https://www.nanohub.org/tools/bandstrlab/

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Neophytos Neophytou
    • 1
  • Abhijeet Paul
    • 1
  • Mark S. Lundstrom
    • 1
  • Gerhard Klimeck
    • 1
  1. 1.School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations