Journal of Computational Electronics

, Volume 7, Issue 3, pp 372–375 | Cite as

An extended Hückel theory based atomistic model for graphene nanoelectronics

  • Hassan RazaEmail author
  • Edwin C. Kan


An atomistic model based on the spin-restricted extended Hückel theory (EHT) is presented for simulating electronic structure and I–V characteristics of graphene devices. The model is applied to zigzag and armchair graphene nano-ribbons (GNR) with and without hydrogen passivation, as well as for bilayer graphene. Further calculations are presented for electric fields in the nano-ribbon width direction and in the bilayer direction to show electronic structure modification. Finally, the EHT Hamiltonian and NEGF (Nonequilibrium Green’s function) formalism are used for a paramagnetic zigzag GNR to show 2e 2/h quantum conductance.


EHT NEGF Graphene Nanoribbon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saito, R., et al.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998) Google Scholar
  2. 2.
    Fujita, M., et al.: Peculiar edge state at zigzag graphite edge. J. Phys. Soc. Japan 65, 1920 (1996) CrossRefGoogle Scholar
  3. 3.
    Raza, H., et al.: Incoherent transport through molecules on silicon in the vicinity of a dangling bond. Phys. Rev. B 77, 035432 (2008) CrossRefGoogle Scholar
  4. 4.
    Raza, H.: Theoretical study of isolated dangling bonds, dangling bond wires, and dangling bond clusters on a H:Si(001)-(2 × 1) surface. Phys. Rev. B 76, 045308 (2007) and references there-in CrossRefGoogle Scholar
  5. 5.
    Kienle, D., et al.: Extended Hückel theory for band structure, chemistry, and transport. I. Carbon nanotubes. J. App. Phys. 100, 043714 (2006) CrossRefGoogle Scholar
  6. 6.
    Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005) zbMATHGoogle Scholar
  7. 7.
    Dennington, R., II, et al.: GaussView Version 3.0. Semichem, Inc., Shawnee Mission (2003) Google Scholar
  8. 8.
    Kawai, T., et al.: Graphitic ribbons without hydrogen-termination: Electronic structure and stabilities. Phys. Rev. B 62, R16349 (2000) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Min, H., et al.: Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 75, 155115 (2007) CrossRefGoogle Scholar
  10. 10.
    Castro, E.V., et al.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringCornell UniversityIthacaUSA

Personalised recommendations