Journal of Computational Electronics

, Volume 7, Issue 3, pp 440–444 | Cite as

High field emission efficiency surface conduction electron emitters

  • Yiming Li
  • Hsueh-Yung Chao
  • Hsiang-Yu Lo


Two different surface conduction electron-emitter (SCE) structures with the nanogap of 90 nm wide fabricated by hydrogen embrittlement (HE) and focused ion beam techniques are simulated for the first time. We employ a three-dimensional particle-in-cell method coupling with finite-difference time-domain scheme to simulate the property of electron emission in these SCEs. Our calibrated simulation predicts high emission efficiency of the SCE structure which is fabricated by HE. Compared with the other SCE structure, it is observed that the proposed structure possesses low power consumption at the fixed emission current when the width of nanogap becomes narrower. The current-voltage characteristics including conducting mechanisms are investigated and explained.


Surface conduction electron-emitter Hydrogen embrittlement Focused ion beam Finite-difference time-domain particle-in-cell method Current-voltage characteristic Electric fields Electron trajectories 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reed, M.A., et al.: Conductance of a molecular junction. Science 278, 252 (1997) CrossRefGoogle Scholar
  2. 2.
    Linag, W., et al.: Kondo resonance in a single-molecule transistor. Nature 417, 725 (2002) CrossRefGoogle Scholar
  3. 3.
    Yi, M., et al.: Theoretical and experimental study towards a nanogap dielectric biosensor. Biosens. Bioelectron. 20, 1320 (2004) CrossRefGoogle Scholar
  4. 4.
    Lee, H.I., et al.: Nanometer-scale gap control for low voltage and high current operation of field emission array. J. Vac. Sci. Technol. B 16, 762 (1998) CrossRefGoogle Scholar
  5. 5.
    Sakai, K. et al.: Flat-panel displays based on surface-conduction electron emitters. In: Proc. of EuroDisplay ’96, pp569 (1996) Google Scholar
  6. 6.
    Yamaguchi, E., et al.: A 10-in. surface-conduction electron-emitter display. J. SID 5, 345 (1997) Google Scholar
  7. 7.
    Okuda, M. et al.: Electron trajectory analysis of surface conduction electron emitter displays (SEDs). In: SID ’98 DIGEST, vol. 14.1, p. 185 (1998) Google Scholar
  8. 8.
    Tsai, C.H., et al.: Nanogap formation by palladium hydrogenation for surface conduction electron emitters fabrications. Appl. Phys. Lett. 90, 163115 (2007) CrossRefGoogle Scholar
  9. 9.
    Tsai, C.H., et al.: Nanogap fabrication on palladium electrodes for field emission display applications. SID Symp. Dig. 38, 583 (2007) CrossRefGoogle Scholar
  10. 10.
    Lo, H.Y., et al.: Three-dimensional simulation of novel surface conduction electron-emitters. SID Symp. Dig. 38, 586 (2007) CrossRefGoogle Scholar
  11. 11.
    Lo, H.Y. et al.: Experimental and theoretical examination of field emission in surface conduction electron-emitter displays. In: Extended Abstract of the 2007 International Conference on Solid State Devices and Materials, p. 544 (2007) Google Scholar
  12. 12.
    Lo, H.Y. et al.: Effect of process variation on field emission characteristic in surface conduction electron-emitters. In: Proceedings of the 7th IEEE International Conference on Nanotechnology, p. 353 (2007) Google Scholar
  13. 13.
    Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. McGraw-Hill, New York (1985) Google Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  1. 1.Department of Communication EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations