Journal of Computational Electronics

, Volume 7, Issue 3, pp 146–150 | Cite as

Simulation of ZnO diodes for application in non-volatile crossbar memories

  • Michele Pra
  • György CsabaEmail author
  • Christoph Erlen
  • Paolo Lugli


As passive crossbar memories contain no amplifying/signal restoring components, their scalability, reliability and speed depends exclusively on the quality of diodes, fuse/antifuse elements and interconnections that constitute them. This paper presents a computational study of ZnO-based Schottky diodes which are thought to be a good candidate for the junction of a crossbar memory, mainly due to their limited thermal budget which guarantees the compatibility with Silicon technology. The simulation shows that the diode characteristics are indeed suitable for their use as junctions. A circuit level simulation demonstrates that optimized ZnO devices would allow the realization of many-megabit memory arrays.


Non-volatile memories Passive memories ZnO rectifying junctions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johnson, M., Al-Shamma, A., Bosch, D., Crowley, M., Farmwald, M., Fasoli, L., Ilkbahar, A., Kleveland, B., Lee, T., Liu, T., Nguyen, Q., Scheuerlein, R., So, K., Thorp, T.: 512-Mb PROM with a three-dimensional array of diode/antifuse memory cells. IEEE J. Solid-State Circ. 38, 11 (2003) Google Scholar
  2. 2.
    Herner, S.B., Bandyopadhyay, A., Dunton, S.V., Eckert, V., Gu, J., Hsia, K.J., Hu, S., Jahn, C., Kidwell, D., Konevecki, M., Mahajani, M., Park, K., Petti, C., Radigan, S.R., Raghuram, U., Vienna, J., Vyvoda, M.A.: Vertical p–i–n polysilicon diode with antifuse for stackable field-programmable ROM. IEEE Elec. Dev. Lett. 25, 5 (2004) CrossRefGoogle Scholar
  3. 3.
    Lai, S.: Current status of the phase change memory and its future electron devices meeting, 2003. IEDM ’03 Technical Digest. IEEE 8–10 (2003) Google Scholar
  4. 4.
    Polyakov, Y., Smirnov, N.B., Kozhukhova, E.A., Vdovin, V.I., Ip, K., Norton, D.P., Pearton, S.J.: Properties of Au and Ag Schottky diodes prepared on undoped n-ZnO. J. Vac. Sci. Technol. A 21, 5 (2003) CrossRefGoogle Scholar
  5. 5.
    Sheng, H., Muthukumar, S., Emanetoglu, N.W., Lu, Y.: Schottky diode with Ag on 1120, epitaxial ZnO film. Appl. Phys. Lett. 80, 12 (2002) Google Scholar
  6. 6.
    Allen, M.W., Alkaisi, M.M., Durbin, S.M.: Metal Schottky diodes on Zn-polar and O-polar bulk ZnO. Appl. Phys. Lett. 89 (2006) Google Scholar
  7. 7.
    von Wenckstern, H., Biehne, G., Rahman, R.A., Hochmuth, H., Lorenz, M., Grundmann, M.: Mean barrier height of Pd Schottky contacts on ZnO thin films. Appl. Phys. Lett. 88 (2006) Google Scholar
  8. 8.
    Hossain, F.M., Nishii, J., Takagi, S., Ohtomo, A., Fukumura, T., Fujioka, H., Ohno, H., Koinuma, H., Kawaski, M.: Modeling and simulation of polycrystalline ZnO thin-film transistors. J. Appl. Phys. (2003) Google Scholar
  9. 9.
    Albrecht, J.D., Ruden, P.P., Limpijumnong, S., Lambrecht, W.R.L., Brennan, K.F.: High field electron transport properties of bulk ZnO. J. Appl. Phys. 86, 12 (1999) CrossRefGoogle Scholar
  10. 10.
    Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S.-J., Morkoç, H.: A comprehensive review of ZnO materials and devices. Appl. Phys. Rev. J. Appl. Phys. (2005) Google Scholar
  11. 11.
    Schmidt, R., Rheinländer, B., Schubert, M., Spemann, D., Butz, T., Lenzner, J., Kaidashev, E.M., Lorenz, M., Rahm, A., Semmelhack, H.C., Grundmann, M.: Dielectric functions of wurtzite MgZnO thin films. Appl. Phys. Lett. 82, 14 (2003) Google Scholar
  12. 12.
    Sentaurus Device Manual, Synopsys, 2005 Google Scholar
  13. 13.
    Ip, K., Heo, Y., Baik, K., Norton, D.P., Pearton, S.J., Ren, F.: Carrier concentration dependence of Ti/Al/Pt/Au contact resistance on n-type ZnO. Appl. Phys. Lett. 84 (2004) Google Scholar

Copyright information

© Springer Science+Business Media LLC 2008

Authors and Affiliations

  • Michele Pra
    • 1
  • György Csaba
    • 1
    Email author
  • Christoph Erlen
    • 1
  • Paolo Lugli
    • 1
  1. 1.Institute for NanoelectronicsTechnical University of MunichMunichGermany

Personalised recommendations