Journal of Computational Electronics

, Volume 7, Issue 3, pp 293–296 | Cite as

Atomistic modeling of hole transport in ultra-thin body SOI pMOSFETs

  • Hideki MinariEmail author
  • Nobuya Mori


Atomistic hole transport simulation based on a nonequilibrium Green’s function method and tight-binding approximation has been performed for four types of ultra-thin double-gate silicon-on-insulator MOSFETs; (i) 〈100〉 channel device on (100) substrate, (ii) 〈110〉 channel device on (100) substrate, (iii) 〈100〉 channel device on (110) substrate, and (iv) 〈110〉 channel device on (110) substrate. Simulation results show that the difference in crystalline orientation of the devices greatly affects ballistic hole current due to a strong confinement-induced mixing of heavy- and light-hole states.


Silicon MOSFET Hole Transport Crystalline orientation Simulation Tight-binding NEGF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995) Google Scholar
  2. 2.
    Lundstrom, M., Guo, J.: Nanoscale Transistors: Device Physics, Modeling, and Simulation. Springer, New York (2006) Google Scholar
  3. 3.
    Pecchia, A., Di Carlo, A.: Rep. Prog. Phys. 64, 1497 (2004) CrossRefGoogle Scholar
  4. 4.
    Minari, H., Mori, N.: Jpn. J. Appl. Phys. 46, 2076 (2007) CrossRefGoogle Scholar
  5. 5.
    Minari, H., Mori, N.: J. Comput. Electron 6, 223 (2007) CrossRefGoogle Scholar
  6. 6.
    Klimeck, G., Bowen, R.C., Boykin, T.B.: Phys. Rev. B 63, 195310 (2001) CrossRefGoogle Scholar
  7. 7.
    Klimeck, G., Bowen, R.C., Boykin, T.B.: Superlattices Microstruct. 29, 187 (2001) CrossRefGoogle Scholar
  8. 8.
    Xia, T., Register, L.F., Banerjee, S.K.: IEEE Trans. Electron Devices 50, 1511 (2003) CrossRefGoogle Scholar
  9. 9.
    Weisbuch, C.: Fundamental properties of III–V semiconductor two-dimensional quantized structures: the basis for optical and electronic device applications. In: Dingle, R. (ed.) Semiconductors Semimetals, vol. 24, p. 1. Academic Press, New York (1987) Google Scholar
  10. 10.
    Tsuchiya, H., Fujii, K., Mori, T., Miyoshi, T.: IEEE Trans. Electron Devices 53, 2965 (2006) CrossRefGoogle Scholar
  11. 11.
    Vogl, P., Hjalmarson, H.P., Dow, J.D.: J. Phys. Chem. Solids 44, 365 (1983) CrossRefGoogle Scholar
  12. 12.
    Madelung, O.: Semiconductors: Data Handbook. Springer, Berlin (2003) Google Scholar
  13. 13.
    Lee, S., Oyafuso, F., Allmen, P.V., Klimeck, G.: Phys. Rev. B 69, 045316 (2004) CrossRefGoogle Scholar
  14. 14.
    Sacconi, F., Persson, M.P., Povolotskyi, M., Latessa, L., Pecchia, A., Gagliardi, A., Balint, A., Fraunheim, T., Di Carlo, A.: J. Comput. Electron 6, 329 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  1. 1.Department of Electronic EngineeringOsaka UniversitySuita CityJapan

Personalised recommendations