Advertisement

Journal of Computational Electronics

, Volume 5, Issue 2–3, pp 125–129 | Cite as

A study of threshold voltage fluctuations of nanoscale double gate metal-oxide-semiconductor field effect transistors using quantum correction simulation

  • Yiming Li
  • Shao-Ming Yu
Article

Abstract

In this paper, we computationally investigate fluctuations of the threshold voltage introduced by random dopants in nanoscale double gate metal-oxide-semiconductor field effect transistors (DG MOSFETs). To calculate variance of the threshold voltage of nanoscale DG MOSFETs, a quantum correction model is numerically solved with the perturbation and the monotone iterative techniques. Fluctuations of the threshold voltage resulting from the random dopant, the gate oxide thickness, the channel film thickness, the gate channel length, and the device width are calculated. Quantum mechanical and classical results have similar prediction on fluctuations of the threshold voltage with respect to different designing parameters including dimension of device geometry as well as the channel doping. Fluctuation increases when the channel doping, the channel film thickness, and/or the gate oxide thickness increase. On the other hand, it decreases when the channel length and/or the device width increase. Calculations of the quantum correction model are quantitatively higher than that of the classical estimation according to different quantum confinement effects in nanoscale DG MOSFETs. Due to good channel controllability, DG MOSFETs possess relatively lower fluctuation, compared with the fluctuation of single gate MOSFETs (less than a half of the fluctuation[-11pc] of SG MOSFETs). To reduce fluctuations of the threshold voltage, epitaxial layers on both sides of channel with different epitaxial doping are introduced. For a certain thickness of epitaxial layers, the fluctuation of the threshold voltage decreases when epitaxial doping decreases. In contrast to conventional quantum Monte Carlo approach and small signal analysis of the Schrödinger-Poisson equations, this computationally efficient approach shows acceptable accuracy and is ready for industrial technology computer-aided design application.

Keywords

Threshold voltage fluctuation Random dopant Quantum correction Modeling and simulation Double gate MOSFET 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fried, D.M., Nowak, E.J., KeIdzierski, J., Duster, J.S., Komegay, K.T.: Proc Device Research Conf. 45 (2003)Google Scholar
  2. 2.
    Ieong, M., Wong, H.-S.P., Nowak, E., Kedzierski, J., Jones, E.C.: Proc. Int. Symp. Quality Elec. Design 492 (2002)Google Scholar
  3. 3.
    Wei, L., Chen, Z., Roy, K.: Proc. IEEE Int. SOI Conf. 69 (1998)Google Scholar
  4. 4.
    Asenov, A.: IEEE Trans. Elec. Dev. 45, 2505 (1998)CrossRefGoogle Scholar
  5. 5.
    Francis, P., Terao, A., Flandre, A.: IEEE Trans. Elec. Dev. 41, 715 (1994)CrossRefGoogle Scholar
  6. 6.
    Suzuki, K., Tanaka, T., Horie, H.: Proc. Int. Workshop VLSI Process and Device Modeling 150 (1993)Google Scholar
  7. 7.
    Keyes, R.W.: Appl. Phys. 8, 251 (1975)CrossRefGoogle Scholar
  8. 8.
    Frank, D.J., Taur, Y., Ieong, M., Wong, H.-S.P.: Dig. Tech. Papers Symp. VLSI Tech. 169 (1999)Google Scholar
  9. 9.
    Brown, A.R., Asenov, A., Watling, J.R.: IEEE Trans. Nanotech. 1, 195 (2002)CrossRefGoogle Scholar
  10. 10.
    Andrei, P., Mayergoyza, I.: J. App. Phys. 96, 2071 (2004)CrossRefGoogle Scholar
  11. 11.
    Weinstock, R.: Calculus of variations: With applications to physics and engineering Dover (1974).Google Scholar
  12. 12.
    Li, Y., Yu, S.M.: Proc. IEEE Nanotech. Conf. 2, 527 (2005)zbMATHGoogle Scholar
  13. 13.
    Li, Y.: Comput. Phys. Commun. 153, 359 (2003)CrossRefGoogle Scholar
  14. 14.
    Nishinohara, K., Shigyo, N., Wada, T.: IEEE Trans. Elec. Dev. 39, 634 (1992)CrossRefGoogle Scholar
  15. 15.
    Asenov, A., Saini, S.: IEEE Trans. Elec. Dev. 46, 1718–1724 (1999)CrossRefGoogle Scholar
  16. 16.
    Li, Y., Yu, S.-M.: Nanotech. 15, 1009 (2004)CrossRefGoogle Scholar
  17. 17.
    Li, Y., Tang, T.-W., Yu, S.-M.: J. Comput. Elec. 2, 491 (2003)zbMATHCrossRefGoogle Scholar
  18. 18.
    Tang, T.-W., Li, Y.: IEEE Trans. Nanotech. 1, 243 (2002)CrossRefGoogle Scholar
  19. 19.
    Asenov, A., Slavcheva, G., Brown, A.R., Davies, J.H., Saini, S.: IEEE Trans. Elec. Dev. 48, 722 (2001)CrossRefGoogle Scholar
  20. 20.
    Li, Y., Chou, H.-M.: IEEE Trans. Nanotech. 4, 645 (2005)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Communication EngineeringNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Department of Computer ScienceNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations