Monte Carlo study of electron transport in strained silicon inversion layers



The effect of degeneracy both on the phonon-limited mobility and the effective mobility including surface-roughness scattering in unstrained and biaxially tensile strained Si inversion layers is analyzed. We introduce a new method for the inclusion of the Pauli principle in a Monte Carlo algorithm. We show that incidentally degeneracy has a minor effect on the bulk effective mobility, despite non-degenerate statistics yields unphysical subband populations and an underestimation of the mean electron energy. The effective mobility of strained inversion layers slightly increases at high inversion layer concentrations when taking into account degenerate statistics.


Monte Carlo simulation Degeneracy effects Strain Mobility enhancement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.-J. Huang, J. Chu, S. Goma, C. Emic, S. Koester, D. Canaperi, P. Mooney, S. Cordes, J. Speidell, R. Anderson, and H. Wong, in VLSI Symp. Tech. Dig., (2001), pp. 57–58.Google Scholar
  2. 2.
    K. Rim, J. Chu, H. Chen, K. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott, K. Petrarca, P. Mooney, D. Lacey, S. Koester, K. Chan, D. Boyd, M. Ieong, and H. Wong, in VLSI Symp. Tech. Dig., (2002), pp. 98–99.Google Scholar
  3. 3.
    N. Sugii, D. Hisamoto, K. Washio, N. Yokoyama, and S. Kimura, in Intl. Electron Devices Meeting, (2001), pp. 737–740.Google Scholar
  4. 4.
    S.-E. Thompson, M. Armstrong, C. Auth, M. Alavi, and M. Buehler, IEEE Trans. Electron Devices, 51, 1790 (2004).CrossRefGoogle Scholar
  5. 5.
    M. V. Fischetti, F. Gamiz, and W. Hänsch, J. Appl. Phys., 92, 7320 (2002).CrossRefGoogle Scholar
  6. 6.
    J. Watling, L. Yang, M. Borici, R. C. Wilkins, A. Asenov, J. R. Barker, and S. Roy, Solid-State Electron., 48, 1337 (2004).CrossRefGoogle Scholar
  7. 7.
    T. Ando, A. Fowler, and F. Stern, Review of Modern Physics, 54, 437 (1982).CrossRefGoogle Scholar
  8. 8.
    S. Bosi and C. Jacoboni, J. Physics C, 9, 315 (1976).CrossRefGoogle Scholar
  9. 9.
    S. Yamakawa, H. Ueno, K. Taniguchi, C. Hamaguchi, K. Miyatsuji, K. Masaki, and U. Ravaioli, J. Appl. Phys., 79, 911 (1996).CrossRefGoogle Scholar
  10. 10.
    D. Roychoudhury and P. K. Basu, Physical Review, B, 22, 6325 (1980).CrossRefGoogle Scholar
  11. 11.
    M. V. Fischetti and Z. Ren, J. Appl. Phys., 94, 1079 (2003).CrossRefGoogle Scholar
  12. 12.
    D. Vasileska, and Z. Ren, SCHRED 2.0 User’s Manual,, (2000).
  13. 13.
    C. Jungemann, A. Edmunds, and W. Engl, Solid-State Electron., 36, 1529 (1993).CrossRefGoogle Scholar
  14. 14.
    S. Takagi, A. Toriumi, M. Iwase, and H. Tango, IEEE Trans. Electron Devices, 41, 2357 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Institut für MikroelektronikVienna University of Technology, TU WienViennaAustria

Personalised recommendations