Journal of Computational Electronics

, Volume 6, Issue 1–3, pp 381–385 | Cite as

Temporal analysis of valence & electrostatics in ion-motive sodium pump

  • J. Fonseca
  • S. KayaEmail author
  • S. Guennoun
  • R. Rakowski


The present work establishes a unique framework for the simulation study of ion-motive pumps in general and the Na+/K+-ATPase, or Na+ pump, in particular. We shall discuss the implications of electrostatic analysis, valence calculations, and protein cavity data, each carried over data extracted from molecular dynamics (MD) simulations, on the structure-function relationship of Na+/K+-ATPase. This diverse set of tools will be used to investigate atomic-level characteristics that remain undetermined such as ion binding and accessibility.


Na+/K+-ATPase Homology modeling Molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Straaten, T.A., Kathawala, G., Trellakis, A., Eisenberg, R.S., Ravaioli, U.: BioMOCA—a Boltzmann transport Monte Carlo model for ion channel simulation. Mol. Sim. 31(2–3), 151–171 (2005)CrossRefGoogle Scholar
  2. 2.
    Millar, C., Asenov, A., Roy, S.: Brownian ionic channel simulation. J. Comp. Elec. 2, 257–262 (2003)CrossRefGoogle Scholar
  3. 3.
    Rakowski, R.F., Kaya, S., Fonseca, J.: Electro-chemical modeling challenges of biological Ion pumps. J. Comp. Elec. 4, 189–193 (2005)CrossRefGoogle Scholar
  4. 4.
    Rakowski, R.F., Sagar, S.: Found: Na+ and K+ Binding sites of the sodium pump. News Physiol. Sci. 18, 164–168 (2003)Google Scholar
  5. 5.
    Artigas, P., Gadsby, D.C.: Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels. Proc. Natl. Acad. Sci. USA 100(2), 501–505 (2003)CrossRefGoogle Scholar
  6. 6.
    Fonseca, J., Kaya, S., Rakowski, R.F.: Models, electrostatics and molecular dynamics of the Na+/K+-ATPase. In: Proceedings of the Ohio Collaborative Conference on Bioinformatics (2006)
  7. 7.
    Toyoshima, C., Nomura, H., Tsuda, T.: Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432, 361–368 (2004)CrossRefGoogle Scholar
  8. 8.
    Sweadner, K.J., Donnet, C.: Structural similarities of Na,K ATPase and SERCA, the Ca2+-ATPase of the sarcoplasmic reiticulum. Biochem. J. 356, 685–704 (2001)CrossRefGoogle Scholar
  9. 9.
    Martí-Renom, M.A., Stuart, A.C., Fiser, A., Sánchez, R., Melo, F., Sali, A.: Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291–325 (2000)CrossRefGoogle Scholar
  10. 10.
    Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: Gromacs: A message-passing parallel molecular dynamics implementation. Comp. Phys. Comm. 91, 43–63 (1995)CrossRefGoogle Scholar
  11. 11.
    Munson, K., Garcia, R., Sachs, G.: Inhibitor and Ion binding sites on the gastric H,K-ATPase. Biochemistry 44, 5267–5284 (2005)CrossRefGoogle Scholar
  12. 12.
    Sagar, A., Rakowski, R.F.: Access channel model for the voltage dependence of the forward-running Na+/K+ pump. J. Gen. Physiol 103, 869–894 (1994)CrossRefGoogle Scholar
  13. 13.
    Nayal, M., Di Cera, E.: Predicting Ca2+-binding sites in proteins. Proc. Natl. Acad. Sci. USA 91, 817–821 (1994)CrossRefGoogle Scholar
  14. 14.
    Ogawa, H., Toyoshima, C.: Homology modeling of the cation binding sites of Na+K+-ATPase. Proc. Natl. Acad. Sci. (USA) 99, 15977 (2002)CrossRefGoogle Scholar
  15. 15.
    Baker, N.A., Sept, D., Joseph, S., Holst, M.J., McCammon, J.A.: Electrostatics of nanosystems: Application to microtubles and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001)CrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  1. 1.School of EECS, Russ College of Eng. & Tech.Ohio UniversityAthensUSA
  2. 2.Department of Biological SciencesOhio UniversityAthensUSA

Personalised recommendations