Journal of Computational Electronics

, Volume 6, Issue 1–3, pp 317–320

Non-equilibrium Green’s function (NEGF) simulation of metallic carbon nanotubes including vacancy defects

  • Neophytos Neophytou
  • Shaikh Ahmed
  • Gerhard Klimeck
Article

Abstract

The electronic behavior of metallic carbon nanotubes under the influence of externally applied electric fields is investigated using the Non-Equilibrium Green’s function method self consistently coupled with three-dimensional (3D) electrostatics. A nearest neighbor tight binding model based on a single pz orbital for constructing the device Hamiltonian is used. The 3D Poisson equation is solved using the Finite Element Method. Carbon nanotubes exhibit a very weak metallic behavior, and external electric fields can alter the electrostatic potential of the tubes significantly. A single vacancy defect in the channel of a metallic carbon nanotube can decrease its conductance by a factor of two. More than one vacancy can further decrease the conductance.

Keywords

Carbon Nanotubes Defects Vacancies Non-Equilibrium Green’s Function Finite Element Method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.: Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003)Google Scholar
  2. 2.
    Javey, A., et al.: High dielectrics for advanced carbon nanotube transistors and logic. Nature Mater. 1, 241–246 (2002)CrossRefGoogle Scholar
  3. 3.
    Kreup, F., Graham, A.P., Liebau, M., Duesberg, G.S., Seidel, R., Unger, E.: Carbon nanotubes for interconnect applications. Electron Dev. Meeting, IEDM Techn. Digest 683–686 (2004)Google Scholar
  4. 4.
    Saito, Y., Uemure, S., Hamaguchi, K.: Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn. J. Appl. Phys. 37, L346–L348 (1998)CrossRefGoogle Scholar
  5. 5.
    Neophytou, N., Kienle, D., Polizzi, E., Anantram, M.P.: Influence of defects in nanotube transistor performance. J. Appl. Phys. accepted (2006)Google Scholar
  6. 6.
    Polizzi, E., Abdallah, B.N.: Self-consistent three-dimensional models for quantum ballistic transport in open systems. Phys. Rev. B. 66, 245301 (2002)CrossRefGoogle Scholar
  7. 7.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge, UK (1995)Google Scholar
  8. 8.
    Guo, J., Datta, S., Lundstrom, M., Anantram, M.P.: Multi-scale modeling of carbon nanotube transistors. Intl. J. Multiscale Comput. Eng. 2, 257 (2004)CrossRefGoogle Scholar
  9. 9.
    Anantram, M.P.: Conductance of carbon nanotubes with disorder: A numerical study. Phys. Rev. B. 58, 4882–4887 (1998)CrossRefGoogle Scholar
  10. 10.
    Svizhenko, A., Anantram, M.P., Govindan, T.R., Biegel, B.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91(4), 2343–2354 (2002)CrossRefGoogle Scholar
  11. 11.
    Chico, L., Benedict, L., Louie, S., Cohen, M.: Quantum conductance of carbon nanotubes with defects. Phys. Rev. B. 54, 4 (1996)CrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  • Neophytos Neophytou
    • 1
  • Shaikh Ahmed
    • 1
  • Gerhard Klimeck
    • 1
  1. 1.Network for Computational Nanotechnology, Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations