Advertisement

Journal of Computational Electronics

, Volume 6, Issue 1–3, pp 191–194 | Cite as

3D simulation of a silicon quantum dot in a magnetic field based on current spin density functional theory

  • M. Lisieri
  • G. Fiori
  • G. Iannaccone
Article

Abstract

We have developed a code for the simulation of the electrical and magnetic properties of silicon quantum dots in the framework of the TCAD Package NANOTCAD-ViDES. We adopt current spin density functional theory with a local density approximation and with the effective mass approximation. We show that silicon quantum dots exhibit large variations of the total spin as the number of electrons in the dot and the applied magnetic field are varied. Such properties are mainly due to the silicon band structure, and make silicon quantum dots interesting systems for spintronic and quantum computing experiments.

Keywords

Current spin density functional theory Silicon quantum dot Spintronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friesen, M., et al.: Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B 67, 121301-1-4 (2003)CrossRefGoogle Scholar
  2. 2.
    Ladd, T.D., et al.: All-silicon quantum computer. Phys. Rev. Lett. 89, 017901-1-4 (2002)CrossRefGoogle Scholar
  3. 3.
    Friesen, M., Tahan, C., Joynt, R., Eriksson, M.A.: Spin readout and initialization in a semiconductor quantum dot. Phys. Rev. B 92, 037901-1-4 (2004)Google Scholar
  4. 4.
    Das Sarma, S., Fabian, J., Hu, X., Žutić, I.: Theoretical perspective on spintronics and spin-polarized transport. IEEE Trans. Magn. 36, 2821 (2000)CrossRefGoogle Scholar
  5. 5.
    Pala, M.G., Governale, M., Kig, J., Zlicke, U., Iannaccone, G.: Two-dimensional hole precession in an all-semiconductor spin field effect transistor. Phys. Rev. B 69, 045304-1-9 (2004)Google Scholar
  6. 6.
    Rokhinson, L.P., Guo, L.J., Chou, S.Y., Tsui, D.C.: Spin transitions in a small Si quantum dot. Phys. Rev. B/ 63, 35321 (2000)CrossRefGoogle Scholar
  7. 7.
    Reimann, S.M., Manninen, M.: Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1325 (2002)CrossRefGoogle Scholar
  8. 8.
    Koskinen, M., Kolehmainen, J., Reimann, S.M., Toivanen, J., Manninen, M.: Quantum dots in magnetic fields: Unrestricted symmetries in the current spin-density functional formalism. The Euro. Phys. J. D 9, 487–490 (1999)CrossRefGoogle Scholar
  9. 9.
    Tanatar, B., Ceperley, D.M.: Ground state of the two-dimensional electron gas. Phys. Rev. B 39, 5005 (1989)CrossRefGoogle Scholar
  10. 10.
    Pala, M.G., Iannaccone, G.: A three-dimensional solver of the Schrödinger equation in momentum space for the detailed simulation of nanostructures. Nanotechnology 13, 369–372 (2002)CrossRefGoogle Scholar
  11. 11.
    Slater, J.C.: A simplification of the Hartree-Fock method. Phys. Rev. B 81, 385–390 (1951)zbMATHCrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria dell’ InformazioneUniversità di PisaPisaItaly

Personalised recommendations