Journal of Computational Electronics

, Volume 6, Issue 1–3, pp 219–222 | Cite as

Simulation of high-field magnetotransport in non-planar 2D electron systems

Article

Abstract

We present a simulation of ballistic magnetotransport in a curved resonant quantum cavity, a non-planar two-dimensional (2D) electron system formed by partial release of the planar cavity under strain. A transfer-matrix technique originally due to Usuki and coworkers [Phys. Rev. B 52, 8244 (1995)] has been adapted to ensure the technique’s continued dependability at high magnetic fields, and accommodate the nonzero local curvature of the simulated system. Conductance in non-planar structures is found to be highly sensitive to the changes in the curvature, indicating their potential in NEMS and sensing applications.

Keywords

Magnetotransport Transfer matrix curved geometries Peierls substitution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chaplik, A.V., et al.: Ballistic transport in quantum cylinders. Superlatt. Microstruct. 23, 1227 (1998)CrossRefGoogle Scholar
  2. 2.
    Marchi, A., Reggiani, S., Rudan, M., Bertoni, A.: Coherent electron transport in bent cylindrical surfaces. Phys. Rev. B 72, 035403 (2005)CrossRefGoogle Scholar
  3. 3.
    Prinz, Y.Ya., Seleznev, V.A., Gutakovsky, A.K., Chehovskiy, A.V., Preobrazhenskii, V.V., Putyato, M.A., Gavrilova, T.A.: Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Physica E 6, 828–831 (2000)CrossRefGoogle Scholar
  4. 4.
    Mendach, S., Kipp, T., Welsch, H., Heyn, Ch., Hansen, W.: Interlocking mechanism for the fabrication of closed single-walled semiconductor microtubes. Semicond. Sci. Technol. 20 402–405 (2005)CrossRefGoogle Scholar
  5. 5.
    Lorke, A., et al.: Curved two-dimensional electron gases. Superlatt. Microstruct. 33, 347 (2003)CrossRefGoogle Scholar
  6. 6.
    Golod, S.V., Prinz, V.Ya., Mashanov, V.I., Gutakovsy, A.K.: Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils. Semicond. Sci. Technol. 16, 181–185 (2001)CrossRefGoogle Scholar
  7. 7.
    Roberts, M.M., Klein, L.J., Savage, D.E., Friesen, M., Celler, G.K., Eriksson, M.A., Lagally, M.G.: Elastically relaxed free-standing strained-silicon nanomembranes. Nat. Mater. 5, 388–393 (2006)CrossRefGoogle Scholar
  8. 8.
    Qin, H., Shaji, N., Merrill, N.E., Kim, H.S., Toonen, R.C., Blick, R.H., Roberts, M.M., Savage, D.E., Lagally, M.G., Celler, G.: Formation of micro-tubes from strained SiGe/Si heterostructures. New J. Phys. 7, 241 (2005)CrossRefGoogle Scholar
  9. 9.
    Shaji, N., et al.: submittedGoogle Scholar
  10. 10.
    DaCosta, R.T.: Quantum mechanics of a constrained particle. Phys. Rev. A 34, 1982 (1981)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Ando, T.: Quantum point contacts in magnetic fields. Phys. Rev. B 44(15), 583–632 (1991)CrossRefGoogle Scholar
  12. 12.
    Usuki, T., Saito, M., Takatsu, M., Kiehl, R.A., Yokoyama, N.: Numerical analysis of ballistic-electron transport in magnetic fields by using a quantum point contact and a quantum wire. Phys. Rev. B 52(11), 8244–8255 (1995)CrossRefGoogle Scholar
  13. 13.
    Bird, J.P., Akis, R., Ferry, D.K., deMoura, A.P.S., Lai, Y.-C., Indlekofer, K.M.: Interference and interactions in open quantum dots. Rept. Prog. Phys. 66, 8017–8027 (2003)CrossRefGoogle Scholar
  14. 14.
    Peierls, R.E.: On the theory of the diamagnetism of conduction electrons. Zeitschrift für Physik 80, 763–791 (1933)MATHCrossRefGoogle Scholar
  15. 15.
    Hofstadter, D.R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239 (1976)CrossRefGoogle Scholar
  16. 16.
    Luttinger, J.M.: The effect of a magnetic field on electrons in a periodic potential. Phys. Rev. 84, 814 (1951)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kohn, W.: Analytical properties of bloch waves and wannier functions. Phys. Rev. 115, 1460 (1959)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations