Journal of Computational Electronics

, Volume 6, Issue 1–3, pp 235–238 | Cite as

Ultrafast Wigner transport in quantum wires

  • Mihail Nedjalkov
  • Dragica Vasileska
  • Emanouil Atanassov
  • Vassil Palankovski


Two quantum-kinetic models, governing the transport of an initial highly non-equilibrium carrier distribution generated locally in a nanowire, are explored. Dissipation processes due to phonons govern the carrier relaxation, which at early stages of the evolution is characterized by the lack of energy conservation in the collisions. The models are analyzed and approached numerically by a backward Monte Carlo method. The basic difference between them is in the way of treatment of the finite collision duration time. The latter introduces quantum effects of broadening and retardation, ultrafast spatial transfer and modification of the classical trajectories, which are demonstrated in the presented simulation results.


Wigner transport Electron-phonon interaction Ultrafast evolution Confined system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Herbst, M., Glanemann, M., Axt, V., Kuhn, T.: Electron-phonon quantum kinetics for spatially inhomogeneous excitations. Phys. Rev. B 67, 195305 (2003)CrossRefGoogle Scholar
  2. 2.
    Rammer, J.: Quantum transport theory of electrons in solids: a single-particle approach. Rev. Mod. Phys. 63, 781 (1991)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Schilp, J., Kuhn, T., Mahler, G.: Electron-phonon quantum kinetics in pulse-excited semiconductors: memory and renormalization effects. Phys. Rev. B 50, 5435 (1994)CrossRefGoogle Scholar
  4. 4.
    Levinson, I.: Translational invariance in uniform fields and the equation for the density matrix in the wigner representation. Sov. Phys. JETP 30, 362 (1970)MathSciNetGoogle Scholar
  5. 5.
    Barker, J.R., Ferry, D.K.: Self-scattering path-variable formulation of high field, time-dependent quantum kinetic equations for semiconductor transport in the finite-collision-duration regime. Phys. Rev. Lett. 42, 1779 (1979)CrossRefGoogle Scholar
  6. 6.
    Sano, N., Natori, K.: Drift-velocity degradation caused by an electric field during collision in one-dimensional quantum wires. Phys. Rev. B 54, R8325 (1996)CrossRefGoogle Scholar
  7. 7.
    Rossi, F., Jacoboni, C., Nedjalkov, M.: A Monte Carlo solution of the Wigner transport equation. Semicond. Sci. Technol. 9, 934 (1994)CrossRefGoogle Scholar
  8. 8.
    Pascoli, M., Bordone, P., Brunetti, R., Jacoboni, C.: Wigner paths for electrons interacting with phonons. Phys. Rev. B 58, 3503 (1998)CrossRefGoogle Scholar
  9. 9.
    Bordone, P., Vasileska, D., Ferry, D.K.: Collision-duration time for optical-phonon emission in semiconductors. Phys. Rev. B 53, 3846 (1996)CrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  • Mihail Nedjalkov
    • 1
  • Dragica Vasileska
    • 2
  • Emanouil Atanassov
    • 3
  • Vassil Palankovski
    • 1
  1. 1.Advanced Material and Device Analysis GroupInstitute for Microelectronics, TU WienViennaAustria
  2. 2.Department of Electrical EngineeringArizona State UniversityTempeUSA
  3. 3.IPP, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations