Journal of Computational Electronics

, Volume 6, Issue 1–3, pp 243–246 | Cite as

Tunneling CNTFETs

  • Mahdi PourfathEmail author
  • Hans Kosina
  • Siegfried Selberherr


Based on the non-equilibrium Green’s function formalism we numerically studied gate-controlled tunneling carbon nanotube field-effect transistors. The effect of doping concentration on the performance of the device has been investigated. We show that an asymmetric doping profile can improve the I on/I off ratio of the device improves.


Non-equilibrium Green’s function Band to band tunneling Carbon nanotube transistors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Javey, A., et al.: Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4(7), 1319 (2004)CrossRefGoogle Scholar
  2. 2.
    Lin, Y.-M., et al.: High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4(5), 481 (2005)CrossRefGoogle Scholar
  3. 3.
    Chen, J., et al.: Self-aligned carbon nanotube transistors with novel chemical doping. IEDM Tech. Dig. 695–698 (2004)Google Scholar
  4. 4.
    Javey, A., et al.: High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5(2), 345 (2005)CrossRefGoogle Scholar
  5. 5.
    Appenzeller, J., et al.: Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. Elect. Dev. 52(12), 2568 (2005)CrossRefGoogle Scholar
  6. 6.
    Knoch, J., et al.: Comparison of transport properties in carbon nanotube field-effect transistors with schottky contacts and doped source/drain contacts. Solid-State Elect. 49(1), 73 (2005)CrossRefGoogle Scholar
  7. 7.
    Venugopal, R., et al.: Simulating quantum transport in nanoscale transistors: real versus mode-space approaches. J. Appl. Phys. 92(7), 3730 (2002)CrossRefGoogle Scholar
  8. 8.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press (1995)Google Scholar
  9. 9.
    Guo, J.: Novel Nanoscale Transistors: Device Physics and Potential. Dissertation, Purdue University (2004)Google Scholar
  10. 10.
    John, D.: Simulation Studies of Carbon Nanotube Field-Effect Transistors. Dissertation, University of British Columbia (2006)Google Scholar
  11. 11.
    Flietner, H.: The E(k) relation for a two band scheme of semiconductors and the application to the metal semiconductor contact. Phys. Stat. Sol. (b) 54(1), 201 (1972)Google Scholar
  12. 12.
    Pourfath, M., et al.: Optimization of schottky barrier carbon nanotube field effect transistors. Microelectro. Eng. 81(2–4), 428 (2005)CrossRefGoogle Scholar
  13. 13.
    Pourfath, M., Kosina, H.: Fast convergent schrödinger-poisson solver for the static and dynamic analysis of carbon nanotube field effect transistors. Lecture Notes Comp. Sci. 3743, 578 (2006)CrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  • Mahdi Pourfath
    • 1
    Email author
  • Hans Kosina
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for Microelectronics, TU WienWienAustria

Personalised recommendations