Advertisement

Journal of Computational Electronics

, Volume 6, Issue 1–3, pp 243–246 | Cite as

Tunneling CNTFETs

  • Mahdi PourfathEmail author
  • Hans Kosina
  • Siegfried Selberherr
Article

Abstract

Based on the non-equilibrium Green’s function formalism we numerically studied gate-controlled tunneling carbon nanotube field-effect transistors. The effect of doping concentration on the performance of the device has been investigated. We show that an asymmetric doping profile can improve the I on/I off ratio of the device improves.

Keywords

Non-equilibrium Green’s function Band to band tunneling Carbon nanotube transistors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Javey, A., et al.: Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4(7), 1319 (2004)CrossRefGoogle Scholar
  2. 2.
    Lin, Y.-M., et al.: High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4(5), 481 (2005)CrossRefGoogle Scholar
  3. 3.
    Chen, J., et al.: Self-aligned carbon nanotube transistors with novel chemical doping. IEDM Tech. Dig. 695–698 (2004)Google Scholar
  4. 4.
    Javey, A., et al.: High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5(2), 345 (2005)CrossRefGoogle Scholar
  5. 5.
    Appenzeller, J., et al.: Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. Elect. Dev. 52(12), 2568 (2005)CrossRefGoogle Scholar
  6. 6.
    Knoch, J., et al.: Comparison of transport properties in carbon nanotube field-effect transistors with schottky contacts and doped source/drain contacts. Solid-State Elect. 49(1), 73 (2005)CrossRefGoogle Scholar
  7. 7.
    Venugopal, R., et al.: Simulating quantum transport in nanoscale transistors: real versus mode-space approaches. J. Appl. Phys. 92(7), 3730 (2002)CrossRefGoogle Scholar
  8. 8.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press (1995)Google Scholar
  9. 9.
    Guo, J.: Novel Nanoscale Transistors: Device Physics and Potential. Dissertation, Purdue University (2004)Google Scholar
  10. 10.
    John, D.: Simulation Studies of Carbon Nanotube Field-Effect Transistors. Dissertation, University of British Columbia (2006)Google Scholar
  11. 11.
    Flietner, H.: The E(k) relation for a two band scheme of semiconductors and the application to the metal semiconductor contact. Phys. Stat. Sol. (b) 54(1), 201 (1972)Google Scholar
  12. 12.
    Pourfath, M., et al.: Optimization of schottky barrier carbon nanotube field effect transistors. Microelectro. Eng. 81(2–4), 428 (2005)CrossRefGoogle Scholar
  13. 13.
    Pourfath, M., Kosina, H.: Fast convergent schrödinger-poisson solver for the static and dynamic analysis of carbon nanotube field effect transistors. Lecture Notes Comp. Sci. 3743, 578 (2006)CrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  • Mahdi Pourfath
    • 1
    Email author
  • Hans Kosina
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for Microelectronics, TU WienWienAustria

Personalised recommendations