Advertisement

Journal of Computational Electronics

, Volume 6, Issue 1–3, pp 179–182 | Cite as

A multi-purpose Schrödinger-Poisson Solver for TCAD applications

  • Markus KarnerEmail author
  • Andreas Gehring
  • Stefan Holzer
  • Mahdi Pourfath
  • Martin Wagner
  • Wolfgang Goes
  • Martin Vasicek
  • Oskar Baumgartner
  • Christian Kernstock
  • Klaus Schnass
  • Gerhard Zeiler
  • Tibor Grasser
  • Hans Kosina
  • Siegfried Selberherr
Article

Abstract

We present the Vienna Schrödinger-Poisson Solver (VSP), a multi-purpose quantum mechanical solver for investigations on nano-scaled device structures. VSP includes a quantum mechanical solver for closed as well as open boundary problems on fairly arbitrary one-dimensional cross sections within the effective mass framework. For investigations on novel gate dielectrics VSP holds models for bulk and interface trap charges, and direct and trap assisted tunneling. Hetero-structured semiconductor devices, like resonant tunneling diodes (RTD), can be treated within the closed boundary model for quick estimation of resonant energy levels. The open boundary model allows evaluation of current voltage characteristics.

Keywords

Simulation Schrödinger-Poisson solver Quantum transport Nanoelectronic devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Semiconductor Industry Association, International Technology Roadmap for Semiconductors - 2005 Update (2005)Google Scholar
  2. 2.
    Trellakis, A., et al.: J. Appl. Phys. 81(12), 7880–7884 (1997)CrossRefGoogle Scholar
  3. 3.
    Stern, F.: Physical Review B 5, 4891 (1972)CrossRefGoogle Scholar
  4. 4.
    Gehring, A., et al.: IEEE Transactions on Device and Materials Reliability. 4 (3), 306–319 (2004)CrossRefGoogle Scholar
  5. 5.
    Karner, M., et al.: Proc. MSED 2005. 97–98 (2005)Google Scholar
  6. 6.
    Houssa, M., et al.: J. Appl. Phys. 87(12), 8615–8620 (2000)CrossRefGoogle Scholar
  7. 7.
    Jiménez-Molinos, F., et al.: J. Appl. Phys. 90 (7), 3396–3404 (2001)CrossRefGoogle Scholar
  8. 8.
    Datta, S.: Superlattices and Microstructures 28, 253–278 (2000)CrossRefGoogle Scholar
  9. 9.
    Pourfath, M., et al.: Proc. MSED 2005. 95–96 (2005)Google Scholar
  10. 10.
    Holzer, S., et al.: SNDT 2004, 113–116 (2004)Google Scholar

Copyright information

© 2006 2007

Authors and Affiliations

  • Markus Karner
    • 1
    Email author
  • Andreas Gehring
    • 2
  • Stefan Holzer
    • 1
  • Mahdi Pourfath
    • 1
  • Martin Wagner
    • 1
  • Wolfgang Goes
    • 1
  • Martin Vasicek
    • 1
  • Oskar Baumgartner
    • 1
  • Christian Kernstock
    • 1
  • Klaus Schnass
    • 1
  • Gerhard Zeiler
    • 1
  • Tibor Grasser
    • 1
  • Hans Kosina
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for Microelectronics, TU WienViennaAustria
  2. 2.AMD SaxonyDresdenGermany

Personalised recommendations