Advertisement

Journal of Computational Electronics

, Volume 6, Issue 1–3, pp 55–58 | Cite as

Physical modeling of electron mobility enhancement for arbitrarily strained silicon

  • Enzo UngersboeckEmail author
  • Siddhartha Dhar
  • Gerhard Karlowatz
  • Hans Kosina
  • Siegfried Selberherr
Article

Abstract

The band structure of Silicon under arbitrary stress/strain conditions has been calculated using the empirical non-local pseudopotential method. It is shown that the change of the electron effective mass cannot be neglected for general stress conditions and how this effect together with the strain induced splitting of the conduction bands can be used to optimize the electron mobility. The effective mass change has been incorporated into our Monte Carlo simulator VMC and an existing low-field mobility model.

Keywords

Silicon band structure Empirical pseudopotential method Uniaxial stress/strain Low-field mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thompson, S.-E. et al.: IEEE Trans. Electron Devices 51, 1790 (2004)CrossRefGoogle Scholar
  2. 2.
    Horstmann, M. et al.: In: Proc. Intl. Electron Devices Meeting, pp. 233–236 (2005)Google Scholar
  3. 3.
    Jan, C.-H. et al.: In: Proc. Intl. Electron Devices Meeting, pp. 60–63 (2005)Google Scholar
  4. 4.
    Uchida, K. et al.: In: Proc. Intl. Electron Devices Meeting, pp. 229–232 (2004)Google Scholar
  5. 5.
    Irie, H. et al.: In: Proc. Intl. Electron Devices Meeting, pp. 225–228 (2004)Google Scholar
  6. 6.
    Uchida, K. et al.: In: Proc. Intl. Electron Devices Meeting, pp. 135–138 (2005)Google Scholar
  7. 7.
    Herring, C., Vogt, E.: Phys. Rev. 101, 944 (1956)zbMATHCrossRefGoogle Scholar
  8. 8.
    Chelikowsky, J.R. Cohen, M.L.: Phys. Rev. B 14, 556 (1976)CrossRefGoogle Scholar
  9. 9.
    Rieger, M.M. Vogl, P.: Phys. Rev. B 48, 14276 (1993)CrossRefGoogle Scholar
  10. 10.
    Van de Walle, C.G., Martin, R.M.: Phys. Rev. B 34, 5621 (1986)CrossRefGoogle Scholar
  11. 11.
    Fischetti, M.V., Laux, S.E.: J. Appl. Phys. 80, 2234 (1996)CrossRefGoogle Scholar
  12. 12.
    Hinckley, J., Singh, J.: Phys. Rev. B 42, 3546 (1990)CrossRefGoogle Scholar
  13. 13.
    Friedel, P., et al.: Phys. Rev. B 39, 7974 (1989)CrossRefGoogle Scholar
  14. 14.
    Kleinman, L.: Phys. Rev. 128, 2614 (1962)CrossRefGoogle Scholar
  15. 15.
    Nielsen, O., Martin, R.: Phys. Rev. B 32, 3792 (1985)CrossRefGoogle Scholar
  16. 16.
    http://www.iue.tuwien.ac.at/software, VMC 2.0 User’s Guide, Institut für Mikroelektronik, Technische Universität Wien, Austria (2006)Google Scholar
  17. 17.
    Dhar, S., et al.: IEEE Trans. Electron Devices 52, 527 (2005)CrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  • Enzo Ungersboeck
    • 1
    Email author
  • Siddhartha Dhar
    • 1
  • Gerhard Karlowatz
    • 1
  • Hans Kosina
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for Microelectronics, TU WienWienAustria

Personalised recommendations