Advertisement

Journal of Computational Electronics

, Volume 5, Issue 4, pp 447–450 | Cite as

Scattering and space-charge effects in Wigner Monte Carlo simulations of single and double barrier devices

  • Viktor SverdlovEmail author
  • Tibor Grasser
  • Hans Kosina
  • Siegfried Selberherr
Article

Abstract

Transport in single and double barrier devices is studied using a Monte Carlo solver for the Wigner transport equation. This approach allows the effects of tunneling and scattering to be included. Several numerical methods have been improved to render the Wigner Monte Carlo technique more robust, including a newly developed particle annihilation algorithm. A self-consistent iteration scheme with the Poisson equation was introduced. The role of scattering and space charge effects on the electrical characteristics of n-i-n nanostructures, ultra-scaled double gate MOSFETs, and GaAs resonant tunneling diodes is demonstrated.

Keywords

Device simulation Quantum transport Wigner equation Monte Carlo method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Palestri, P. et al.: Understanding quasi-ballistic transport in nano-MOSFETs: Part I—Scattering in the channel, and in the drain. IEEE Trans. Electron Devices 52(12), 2727 (2005)CrossRefGoogle Scholar
  2. 2.
    Jungemann, C.: et al.: Investigation of strained Si/SiGe devices by MC simulation, Solid-State Electron. 48(8), 1417 (2004)CrossRefGoogle Scholar
  3. 3.
    Gilbert, M. et al.: Phonon-assisted ballistic to diffusive crossover in silicon nanowire transistors. J. Appl. Phys. 98(9), 094303 (2005)CrossRefGoogle Scholar
  4. 4.
    Kosina, H. et al.: A Monte Carlo method seamlessly linking quantum and classical transport calculations. J. Computational Electronics 2(2–4), 147 (2002)Google Scholar
  5. 5.
    Frensley, W.: Boundary conditions for open quantum systems driven far from equilibrium. Revi. Modern Phys. 62(3), 745 (1990)CrossRefGoogle Scholar
  6. 6.
    Wigner, E.: On the quantum correction for thermodynamic equilibrium. Physi. Revi. 40, 749 (1932)zbMATHCrossRefGoogle Scholar
  7. 7.
    Gehring, A., Kosina, H.: Wigner-function based simulation of quantum transport in scaled dg-mosfets using the monte carlo method. J. Comput. Electr. 4(1–2), 67 (2005)Google Scholar
  8. 8.
    Kosina, H., Nedjalkov, M.: Handbook of theoretical and computational nanotechnology In: 10 chapter Wigner Function Based Device Modeling, pp. 731–763. American Scientific Publishers Los Angeles (2006), (in print)Google Scholar
  9. 9.
    Nedjalkov, M. et al.: Operator-split method for variance reduction in stochastic solutions for the wigner equation. Monte Carlo Methods Appl. 10(3–4), 461 (2004)CrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  • Viktor Sverdlov
    • 1
    Email author
  • Tibor Grasser
    • 1
  • Hans Kosina
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for Microelectronics, TU ViennaViennaAustria

Personalised recommendations