Advertisement

Journal of Computational Electronics

, Volume 5, Issue 4, pp 397–400 | Cite as

Quantum correction for DG MOSFETs

  • Martin WagnerEmail author
  • Markus Karner
  • Johann Cervenka
  • Martin Vasicek
  • Hans Kosina
  • Stefan Holzer
  • Tibor Grasser
Article

Abstract

The characteristics of modern semiconductor devices are strongly influenced by quantum mechanical effects. Due to this fact, purely classical device simulation is not sufficient to accurately reproduce the device behavior. For instance, the classical semiconductor equations have to be adapted to account for the quantum mechanical decrease of the carrier concentration near the gate oxide. Several available quantum correction models are derived for devices with one single inversion layer and are therefore only of limited use for thin double gate (DG) MOSFETs where the two inversion layers interact. We present a highly accurate quantum correction model which is even valid for extremely scaled DG MOSFET devices. Our quantum correction model is physically based on the bound states that form in the Si film. The eigenenergies and expansion coefficients of the wave functions are tabulated for arbitrary parabolic approximations of the potential in the quantum well. Highly efficient simulation of DG MOSFET devices scaled in the decananometer regime in TCAD applications is made possible by this model.

Keywords

Simulation Confinement Quantum correction DG MOSFETs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hänsch, W., Vogelsang, T., Kircher, R., Orlowski, M.: Carrier transport near the Si/SiO2 Interface of a MOSFET. Solid State Electronics 32, 839 (1991)CrossRefGoogle Scholar
  2. 2.
    Paasch, G., Übensee, H.: Carrier density near the semiconductor-insulator interface – local density approximation for non-isotropic effective mass. Phys.Stat.Sol. B 118(1), 255 (1983)Google Scholar
  3. 3.
    Van Dort, M., Woerlee, P., Walker, A.: A simple model for quantisation effects in Heavily-Doped Silicon MOSFETs at Inversion Conditions. Solid State Electronics 37(3), 411 (1994)CrossRefGoogle Scholar
  4. 4.
    Jungemann, C., Nguyen, C.D., Neinhüs, B., Decker, S., Meinerzhagen, B.: Improved modified local density approximation for modeling of size quantization in NMOSFETs. Proc. Intl. Conf. Modeling and Simulation of Microsystems 2001, 458 (2001)Google Scholar
  5. 5.
    Nguyen, C., Jungemann, C., Meinerzhagen, B.: Modeling of size quantization in strained Si-nMOSFETs with the improved modified local density approximation. Proceedings NSTI-Nanotech 2005 3, 33 (2005)Google Scholar
  6. 6.
    Wagner, M., Karner, M., Grasser, T.: Quantum correction models for modern semiconductor devices. Proceedings of the XIII International Workshop on Semiconductor Devices 1, 458 (2005)Google Scholar
  7. 7.
    Karner, M., Wagner, M., Grasser, T., Kosina, H.: A physically based quantum correction model for DG MOSFETs. Proc. MRS Spring Meeting 2006, 104 (2006)Google Scholar
  8. 8.
    Stern, F.: Self-Consistent Results for n-Type Si Inversion Layers. Physical Review B 5, 4891 (1972)CrossRefGoogle Scholar
  9. 9.
    IμE, MINIMOS-NT 2.1 User’s Guide. Institute for Microelectronics, Technische Universität Wien, Austria (2004). http://www.iue.tuwien.ac.at/software/minimos-ntGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  • Martin Wagner
    • 1
    Email author
  • Markus Karner
    • 1
  • Johann Cervenka
    • 1
  • Martin Vasicek
    • 1
  • Hans Kosina
    • 1
  • Stefan Holzer
    • 2
  • Tibor Grasser
    • 2
  1. 1.Institute for Microelectronics, TU WienViennaAustria
  2. 2.Christian Doppler Laboratory for TCAD in Microelectronics at the Institute for Microelectronics, TU WienViennaAustria

Personalised recommendations