Journal of Computational Electronics

, Volume 5, Issue 4, pp 405–410 | Cite as

Particle-based simulation: An algorithmic perspective

  • Marco SaranitiEmail author
  • Shela Aboud
  • Julien Branlard
  • Stephen M. Goodnick


This article reviews some of the latest advances of the algorithmic aspects of particle-based methods for the simulation of both solid-state devices and biological systems. After a brief historical introduction, a discussion will be offered about the recent evolution of numerical methods used by both Full-Band Ensemble Monte Carlo (EMC) and Molecular Dynamics (MD) algorithms. A discussion of some relevant applications of both simulative approaches is accompanied by a critical analysis of the main limitations of the methods. Several needed improvements are discussed as well, and the potential of the algorithms for modeling systems of higher complexity.


Monte Carlo Molecular dynamics Particle-based simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shichijo, H., Hess, K.: Band-structure-dependent transport and impact ionization in GaAs. Physical Review B 23(8), 4197 (1981)CrossRefGoogle Scholar
  2. 2.
    Tang, J., Hess, K.: Impact ionization of electrons in silicon (steady state). Journal of Applied Physics 54(9), 5139 (1983)CrossRefGoogle Scholar
  3. 3.
    Fischetti, M., Laux, S.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Physical Review B 38(14), 9721 (1988)CrossRefGoogle Scholar
  4. 4.
    Saraniti, M., Goodnick, S.: Hybrid full-band Cellular Automaton/Monte Carlo approach for fast simulation of charge transport in semiconductors. IEEE Transactions on Electron Devices 47(10), 1909 (2000)CrossRefGoogle Scholar
  5. 5.
    Saraniti, M. et al.: An efficient multigrid poisson solver for device simulations. IEEE Transaction on Computer–aided Design of Integrated Circuits and Systems 15(2), 141 (1996)CrossRefGoogle Scholar
  6. 6.
    Wigger, S.: Three dimensional multigrid poisson solver for use in semiconductor device modeling. M.S. thesis Arizona State University Tempe, AZ (1998)Google Scholar
  7. 7.
    Ayubi-Moak, J. et al.: 3D biconjugate gradient-multi grid coupling schemes for field equations in semiconductor device simulation. In Proceedings of 2002 International Conference on Modeling and Simulation of Microsystems - MSM2002 (2002), Accepted for poster presentationGoogle Scholar
  8. 8.
    Chiney, P. et al.: Full-band particle-based analysis of device scaling for 3D tri-gate FETs. Journal of Computational Electronics 4(1-2), 45 (2005)CrossRefGoogle Scholar
  9. 9.
    Ayubi-Moak, J. et al.: Coupling maxwell’s equations to full-band particle-based simulators. Journal of Computational Electronics 2, 183 (2003)CrossRefGoogle Scholar
  10. 10.
    Branlard, J.: Global modeling of high frequency circuits and devices, Ph.D. thesis, Illinois Institute of Technology Chicago, Illinois (2004)Google Scholar
  11. 11.
    Berendsen, H. et al.: Gromacs: A message-passing parallel molecular dynamics implementation. Comp. Phys. Comm. 91, 43 (1995)CrossRefGoogle Scholar
  12. 12.
    Brooks, B. et al.: CHARMM: A program for macromulecular energy, minimization and dynamics calculations. Journal of Computational Chemistry 4, 187 (1983)CrossRefGoogle Scholar
  13. 13.
    Shrivastava, I.H., Sansom, M.S.P.: Simulations of ion permeation through a potassium channel: Molecular dynamics of KcsA in a phospholipid bilayer. Biophysical Journal 78(2), 557 (2000)Google Scholar
  14. 14.
    Freddolino, P., et al.: Molecular dynamics simulation of the complete satellite tobacco mosaic virus. Structure 14(3), 437 (2006)CrossRefGoogle Scholar
  15. 15.
    Roux, B., Bernèche, S.: On the potential functions used in molecular dynamics simulations of ion channels. Biophysical Journal 82(3), 1681 (2002)Google Scholar
  16. 16.
    Saraniti, M. et al.: The Simulation of Ionic Charge Transport in Biological ion Channels: An Introduction to Numerical Methods 22 of Reviews in Computational Chemistry 229–284, Wiley (2006)Google Scholar
  17. 17.
    Berendsen, H.: Molecular dynamics simulations: The limits and beyond. In Computational Molecular Dynamics: Challenges, Methods, Ideas 3–36, Springer-Verlag (1999)Google Scholar
  18. 18.
    Jakobsson, E.: Using theory and simulation to understand permeation and selectivity in ion channels. Methods. A Companion to Methods in Enzymology 14, 342 (1998)CrossRefGoogle Scholar
  19. 19.
    Jorgensen, W. et al.: Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics 79(2), 926 (1983)CrossRefGoogle Scholar
  20. 20.
    Wallqvist, A., Mountain, R.: Molecular Models of Water: Derivation and Description 13 of Reviews in Computational Chemistry, chapter 4, 183–247, John Wiley and Sons (1999)Google Scholar
  21. 21.
    Berendsen, H. et al.: Interaction models for water in relation to protein hydration. In Intermolecular Forces 331–342, Reidel Dodrecht, Holland (1981)Google Scholar
  22. 22.
    Jorgensen, W.: Revised TIPS for simulation of liquid water and aqueous solutions. Journal Chemical Physics 77(7), 4156 (1982)CrossRefGoogle Scholar
  23. 23.
    Berendsen, H. et al.: The missing term in effective pair potentials. Journal of Physical Chemistry 91, 6269 (1987)CrossRefGoogle Scholar
  24. 24.
    Ryan, J. et al.: Overshoot saturation in ultra-small submicron FETs due to minimum accelaration lengths. Solid-State Electronics 32(12), 1609 (1989)CrossRefGoogle Scholar
  25. 25.
    Hockney, R., Eastwood, J.: Computer Simulation Using Particles. Adam Hilger Bristol (1988)Google Scholar
  26. 26.
    Warriner, R.A.: Computer simulation of gallium arsenide field-effect transistors using Monte-Carlo methods. IEE Solid State and Electron Devices 1(4), 105 (1977)CrossRefGoogle Scholar
  27. 27.
    Laux, S.: Techniques for small-signal analysis of semiconductor devices. IEEE Transactions on Electron Devices ED-32(10), 2028 (1985)Google Scholar
  28. 28.
    Im, W., Roux, B.: Ions and counterions in a biological channel: A molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. Journal of Molecular Biology 319(5), 1177 (2002)CrossRefGoogle Scholar
  29. 29.
    Bernèche S., Roux, B.: Molecular dynamics of the KcsA K+ Channel in a bilayer membrane. Biophysical Journal 78(6), 2900 (2000)Google Scholar
  30. 30.
    Bernèche, S., Roux, B.: Energetics of ion conduction through the K+ channel. Nature 414, 73 (2001)CrossRefGoogle Scholar
  31. 31.
    Straatsma, T.: Free Energy by Molecular Simulation 9 of Reviews in Computational Chemistry, chapter 2, 81–127, VHC Publishers (1996)Google Scholar
  32. 32.
    Bernèche, S., Roux, B.: A microscopic view of ion conduction through the K+ channel. Proceedings of the National Academy of Sciences 100(15), 8644 (2003)CrossRefGoogle Scholar
  33. 33.
    Chiu, S. et al.: The nature of ion and water barrier crossings in a simulated ion channel. Biophysical Journal 64(1), 98 (1993)CrossRefGoogle Scholar
  34. 34.
    Mamonov, A. B. et al.: The role of the dielectric barrier in narrow biological channels: A novel composite approach to modeling single-channel currents. Biophysical Journal 84(6), 3646 (2003)Google Scholar
  35. 35.
    Roux, B.: Statistical mechanical equilibrium theory of selective Ion channels. Biophysical Journal 77(1), 139 (1999)Google Scholar
  36. 36.
    Torrie, G., Valleau, J.: Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computatiuonal Physics 23, 187 (1977)CrossRefGoogle Scholar
  37. 37.
    Becker, O. et al.: Eds., Computational biochemistry and biophysics. Marcel Dekker, Inc. New York, Basel (2001)Google Scholar
  38. 38.
    Zhou, Y. et al.: Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414, 43 (2001)Google Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  • Marco Saraniti
    • 1
    Email author
  • Shela Aboud
    • 1
  • Julien Branlard
    • 1
  • Stephen M. Goodnick
    • 2
  1. 1.ECE DepartmentIllinois Institute of TechnologyChicagoUSA
  2. 2.EE DepartmentArizona State UniversityTempeUSA

Personalised recommendations