Advertisement

Journal of Computational Electronics

, Volume 5, Issue 4, pp 365–370 | Cite as

A simulation-based evolutionary technique for inverse doping profile problem of sub-65 nm CMOS devices

  • Yiming Li
  • Cheng-Kai Chen
Article

Abstract

In this paper, we utilize an evolutionary technique for inverse doping profile problems of the 65 nm complementary metal oxide semiconductor (CMOS) devices. The approach mainly bases upon the process simulation, device simulation, evolutionary strategy, and empirical knowledge. For a set of given measured I-V curves of the 65 nm CMOS, a developed prototype performs the optimization task to automatically calibrate and inversely search out, for example the doping recipe and device physical model parameters. The simulation-optimization-coupled methodology is complicated theoretically, but our preliminary results imply that it may benefit the development of fabrication technology and can be used for the performance diagnosis, in particular, for sub-65 nm devices.

Keywords

Inverse modeling problems Process simulation Device simulation Doping profile Evolutionary technique Optimization method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer-Verlag, New York (1984)Google Scholar
  2. 2.
    Binder, T., Heitzinger, C., Selberherr, S.: A study on global and local optimization techniques for TCAD analysis tasks. IEEE Trans. CAD. 23, 6 (2004)Google Scholar
  3. 3.
    Lombardi, C., Manzini, S., Saporito, A., Vanzi, M.: A physically based mobility model for numerical, simulation of nonplanar devices. IEEE Trans. CAD. 7, 1164 (1988)Google Scholar
  4. 4.
    Darwish, M.N., Lentz, J.L., Pinto, M.R., Zeitzoff, P.M., Krutsick, T.J., Vuong, H.H.: An improved electron and hole mobility model for general purpose device simulation. IEEE Trans. Elec. Dev. 44, 1529 (1997)CrossRefGoogle Scholar
  5. 5.
    Schenk, A.: Rigorous theory and simplified model of the band-to-band tunneling in Silicon. Solid-State Elec. 36, 19 (1993)CrossRefGoogle Scholar
  6. 6.
    Li, Y., Chou, H.-M., Lee, J.-W.: Investigation of electrical characteristics on surrounding-gate and omega-shaped-gate nanowire FinFETs. IEEE Trans. Nanotech. 4, 510 (2005)CrossRefGoogle Scholar
  7. 7.
    Tang, T.-W., Wang, X., Li, Y.: Discretization scheme for the density-gradient equations and effect of boundary conditions. J. Comput. Elec. 1, 389 (2002)CrossRefGoogle Scholar
  8. 8.
    Li, Y., Sze, S.M., Chao, T.-S.: A practical implementation of parallel dynamic load balancing for adaptive computing in VLSI device simulation. Eng. Comput. 18, 124 (2002)CrossRefGoogle Scholar
  9. 9.
    Li, Y., Yu, S.-M.: A two-dimensional quantum transport simulation of nanoscale double-gate MOSFETs using parallel adaptive technique. IEICE Trans. Inf. Syst. E87-D, 1751 (2004)Google Scholar
  10. 10.
    Li, Y., Cho, Y.-Y.: Intelligent BSIM4 model parameter extraction for sub-100 nm MOSFET era. Jpn. J. Appl. Phys. 43, 1717 (2004)CrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  1. 1.Department of Communication EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations