Journal of Computational Electronics

, Volume 5, Issue 4, pp 371–376 | Cite as

Numerical simulation and comparison of electrical characteristics between uniaxial strained bulk and SOI FinFETs

Article

Abstract

In this paper, electrical characteristics of 25 nm strained fin-typed field effect transistors (FinFETs) with oxide-nitride-stacked-capping layer are numerically studied. The FinFETs are fabricated on two different wafers, one is bulk silicon and the other is silicon-on-insulator (SOI) substrate. A three-dimensional device simulation is performed by solving a set of density-gradient-hydrodynamic equations to study device performance including, such as the drain current characteristics (the ID-VG and ID-VD curves), the drain-induced barrier height lowering, and the subthreshold swing. Comparison between the strained bulk and SOI FinFETs shows that the strained bulk FinFET is promising for emerging multiple-gate nanodevice era according to the manufacturability point of view.

Keywords

Strained bulk FinFET Strained SOI FinFET Device simulation Electrical characteristics Drain current Drain-induced barrier height lowering Subthreshold swing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thompson, Scott E. et al.: A logic nanotechnology featuring strained-silicon. IEEE Elec. Dev. Lett. 25, 191 (2004)CrossRefGoogle Scholar
  2. 2.
    Yang, L. et al.: Si/SiGe heterostructure parameters for device simulations. Semicond. Sci. Tech. 19, 1174 (2004)CrossRefGoogle Scholar
  3. 3.
    Cristoloveanu, S.: Silicon on insulator technologies and devices: from present to future. Solid-State Elec. 45, 1403 (2002)CrossRefGoogle Scholar
  4. 4.
    Shang, H. et al.: Mobility and CMOS devices on sub-10nm [110] ultra thin body SOI. In Dig. Tech. Papers Symp. VLSI Tech., 78 (2005)Google Scholar
  5. 5.
    Zheng, T. et al.: On “pure self-heating effect’ of MOSFET in SOI. In Proc. IEEE Solid-State Integrated-Circuit Tech. 1, 655 (2001)Google Scholar
  6. 6.
    Li, Y., Sze, S.M., Chao, T.-S.: A practical implementation of parallel dynamic load balancing for adaptive computing in VLSI device simulation. Eng. Comput. 18, 124 (2002)CrossRefGoogle Scholar
  7. 7.
    Odanaka, S.: Multidimensional discretization of the stationary quantum drift-diffusion model for ultrasmall MOSFET structures. IEEE Trans. CAD. 23, 837 (2004)Google Scholar
  8. 8.
    Taurus TSUPREM-4 User Guide, Ver. W-2004.09.Google Scholar
  9. 9.
    Li, Y. et al.: Silicon-Germanium structure in surrounding-gate strained silicon nanowire field effect transistors. J. Comput. Elec. 3, 251 (2004)CrossRefGoogle Scholar
  10. 10.
    Bank, R.E. et al.: Numerical methods for semiconductor device simulation. IEEE Trans. Elec. Dev. ED-30, 1031 (1983)Google Scholar
  11. 11.
    Buturla, E.M. et al.: Finite-element analysis of semiconductor devices: The FIELDAY program. IBM J. Res. Develop. 25, 218 (1981)CrossRefGoogle Scholar
  12. 12.
    Li, Y. et al.: Investigation of electrical characteristics on surrounding-gate and omega-shaped-gate nanowire FinFETs. IEEE Trans. Nanotech. 4, 510 (2005)CrossRefGoogle Scholar
  13. 13.
    Li, Y. et al.: Comparison of nanoscale metal-oxide-semiconductor field effect transistors. In “Simulation of semiconductor processes and devices 2004’’ (Ed.) G. Wachutka and G. Schrag, Springer-Verlag Wien, 307 (2004)Google Scholar
  14. 14.
    Fischetti, M.V., Laux, S.E.: Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234 (1996)CrossRefGoogle Scholar
  15. 15.
    Egley, J.L., Chidambaro, D.: Strain effect on device characteristics: Implementation in drift-diffusion simulators. Solid-State Elec. 36, 1653 (1993)CrossRefGoogle Scholar
  16. 16.
    Arghavani, R. et al.: Stress management in sub-90-nm transistor architecture. IEEE Trans. Elec. Dev. 51, 1740 (2004)CrossRefGoogle Scholar
  17. 17.
    Toda, A. et al.: Local lattice strain distribution around a transistor channel in metal-oxide-semiconductor devices. Appl. Phys. Lett. 79, 4243 (2001)CrossRefGoogle Scholar
  18. 18.
    Obradovic, B. et al.: A physically-based analytic model for stress-induced hole mobility enhancement. J. Comput. Elec. 3, 161 (2004)CrossRefGoogle Scholar

Copyright information

© 2006 2006

Authors and Affiliations

  1. 1.Department of Communication EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations