Journal of Computational Electronics

, Volume 4, Issue 1–2, pp 171–174

A Simulative Model for the Analysis of Conduction Properties of Ion Channels Based on First-Principle Approaches

  • Fabio Affinito
  • Rossella Brunetti
  • Carlo Jacoboni
  • Enrico Piccinini
  • Massimo Rudan
  • Albertino Bigiani
  • Paolo Carloni
Article

Abstract

A physical model and a simulation framework are proposed for the analysis of conduction properties of ion channels. The permeation path of ions along the channel is defined through the simultaneous occupancy of a set of individual ion binding sites within the pore identified from structural X-ray data and Molecular Dynamics (MD) simulations. All permitted elementary transitions between different channel configurations and their rate constants can be evaluated from the atomistic structure and MD data and are implemented into a statistical model which is then coded in a Monte Carlo simulator. Results for K ions permeating the KcsA channel are shown.

Keywords

ion channels KcsA molecular dynamics statistical models Monte Carlo simulator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Zhou et al., “Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0/AA/ resolution,” Nature, 414, 43 (2001).CrossRefPubMedGoogle Scholar
  2. 2.
    B. Roux et al., “Theoretical and computational models of biological ion channels,” Quart. Rev. Biophys., 37(1), 15 (2004).CrossRefGoogle Scholar
  3. 3.
    M. Compoint et al., “Molecular dynamics study of the KcsA channel at 2.0-/AA/ resolution: Stability and concerted motions within the pore,” Biochim. Biophys. Acta, 1661, 26 (2004).PubMedGoogle Scholar
  4. 4.
    M.S.P. Sansom et al., “Potassium channels: Structures, models, simulations,” Biochim. Biophys. Acta, 1565, 294 (2002).PubMedGoogle Scholar
  5. 5.
    M. Cascella et al., “Multiple steering molecular dynamics applied to water exchange at alkali ions,” J. Phys. Chem. B, 106, 13027 (2002).CrossRefGoogle Scholar
  6. 6.
    P. Hänggi et al., “Reaction-rate theory: Fifty years after Kramers,” Rev. Mod. Phys., 62(2), 251 (1990).CrossRefGoogle Scholar
  7. 7.
    T.W. Allen and S.H. Chung, “Brownian dynamics study of an open-state KcsA potassium channel,” Biochim. Biophys. Acta, 1515, 83 (2001).PubMedGoogle Scholar
  8. 8.
    H.J.C. Berendsen et al., “GROMACS: A message-passing parallel molecular dynamics implementation,” Comp. Phys. Comm., 91, 43 (1995).CrossRefGoogle Scholar
  9. 9.
    E. Lindahl et al., “Gromacs 3.0: A package for molecular simulation and trajectory analysis,” J. Mol. Mod., 7, 306 (2001).Google Scholar
  10. 10.
    W. Humprey et al., “VMD—Visual Molecular Dynamics,” J. Molec. Graphics, 14(1), 33 (1996).CrossRefGoogle Scholar
  11. 11.
    M. LeMasurier et al., “KcsA: It’s a potassium channel,” J. Gen. Physiol., 118(3), 303 (2001).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Fabio Affinito
    • 1
  • Rossella Brunetti
    • 1
  • Carlo Jacoboni
    • 1
  • Enrico Piccinini
    • 2
  • Massimo Rudan
    • 2
  • Albertino Bigiani
    • 3
  • Paolo Carloni
    • 4
  1. 1.INFM-S3 Research Center and Dipartimento di FisicaUniversità di Modena e Reggio EmiliaItaly
  2. 2.Dipartimento di Ingegneria Elettronica, Informatica e SistemisticaUniversità di BolognaItaly
  3. 3.INFM and Dipartimento di Scienze BiomedicheUniversità di Modena e Reggio EmiliaItaly
  4. 4.INFM and Scuola Internazionale Superiore di Studi AvanzatiTriesteItaly

Personalised recommendations