Advertisement

Journal of Computational Electronics

, Volume 4, Issue 1–2, pp 63–66 | Cite as

Code for the 3D Simulation of Nanoscale Semiconductor Devices, Including Drift-Diffusion and Ballistic Transport in 1D and 2D Subbands, and 3D Tunneling

  • G. Fiori
  • G. Iannaccone
Article

Abstract

We present a three-dimensional device simulator, suitable for the study of a wide range of nanoscale devices, in which quantum confinement and carrier transport are taken into account. In particular, depending on the confinement, the 1D, 2D or 3D Schrödinger equation with density functional theory in the local density approximation is coupled with the Poisson equation in the three-dimensional domain. Continuity equation in the ballistic and in the drift-diffusion regime are also solved assuming separation of the subbands.

Keywords

quantum modeling ballistic transport three-dimensional Poisson 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Technology Roadmap for Semiconductors 2003, Semiconductor Industry Association, S. Josè, USA (http://public.itrs.net).
  2. 2.
    Y. Taur and T.H. Ning, Fundamentals of Modern VLSI devices (Cambridge University Press, Cambridge UK, 1998), p. 194.Google Scholar
  3. 3.
    Y. Taur, D.A. Buchanan, W. Chen, D.J. Frank, K.E. Ismail, S.H. Lo, G.A. Sail-Lalasz, R.G. Viswanathan, H.J.C. Wann, S.J. Wind, and H.S. Wong, Proc. IEEE, 85, 486 (1997).CrossRefGoogle Scholar
  4. 4.
    Z. Ren, R. Venugopal, S. Datta, and M. Lundstrom, IEDM tech. Dig., 715 (2000).Google Scholar
  5. 5.
    E. Suzuki, K. Ishii, S. Kanemaru, T. Maeda, T. Tsutsumi, T. Sekigawa, K. Nagai, and H. Hiroshima, IEEE Trans. Electron Devices, 47, 354 (2000).CrossRefGoogle Scholar
  6. 6.
    J.P. Colinge, J.T. Park, and C.A. Colinge, MIEL 2002, Proceedings, 109 (2002).Google Scholar
  7. 7.
    J. Wang, E. Polizzi, and M. Lundstrom, IEDM Tech. Dig., 29 (2003).Google Scholar
  8. 8.
    T.J. Walls, V.A. Sverdlov, and K.K. Likharev, Solid-State Electron., 48, 857 (2004).CrossRefGoogle Scholar
  9. 9.
    G. Iannaccone and P. Coli., Appl. Phys. Lett., 78, 2046, (2001).CrossRefGoogle Scholar
  10. 10.
    A. Scholze, A. Schenk, and W. Fichtner, IEEE Trans. Electron Devices, 47, 1811 (2000).CrossRefGoogle Scholar
  11. 11.
    A. Trellakis, A.T. Galick, A. Pacelli, and U. Ravaioli, J. Appl. Phys, 81, 7800 (1997).CrossRefGoogle Scholar
  12. 12.
    G. Fiori and G. Iannaccone, Nanotechnology, 13, 294 (2002).CrossRefGoogle Scholar
  13. 13.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge UK, 1998), p. 29.Google Scholar
  14. 14.
    J.C. Slater, Phys. Rev., 81, 385 (1951).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, TelecomunicazioniUniversità degli studi di PisaPisaItaly

Personalised recommendations