Journal of Computational Electronics

, Volume 4, Issue 1–2, pp 21–25 | Cite as

Optical and Electrical Properties of Colloidal Quantum Dots in Electrolytic Environments: Using Biomolecular Links in Chemically-Directed Assembly of Quantum Dot Networks

  • Michael A. Stroscio
  • Mitra Dutta
  • Dinakar Ramadurai
  • Peng Shi
  • Yang Li
  • Milana Vasudev
  • Dimitri Alexson
  • Babak Kohanpour
  • Akil Sethuraman
  • Vikas Saini
  • Amit Raichura
  • Jianyong Yang
Article

Abstract

The threshold of the absorption spectra of colloidal cadmium sulfide (CdS) quantum dots in electrolytic solutions is shown to shift as the concentration of the electrolyte is varied. The shift in the absorption threshold as a function of the electrolytic concentration is given by electrolytic screening of the field caused by the intrinsic spontaneous polarization of these würtzite quantum dots. These electrolyte-dependent absorption properties are compared with Fermi-level tuning in carbon nanotubes in electrolytic environments.

Moreover, concepts for integrating such colloidal quantum dots in high density networks with biomolecular links are discussed. Such biomolecular links are used to facilitate the chemically-directed assembly of quantum dots networks with densities approximating 1017 cm−3.

Keywords

enspace quantum dots biomolecules integrated ensembles of nanostructures electrochemical tuning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. Dimitri Alexson et al., “Binding of Semiconductor Quantum Dots to Cellular Integrins,” IEEE Transactions on Nanotechnology, 3, 86 (2004).CrossRefGoogle Scholar
  2. 2.
    2. Michael A. Stroscio and Mitra Dutta (eds.), Biological Nanostructures and Applications of Nanostructures in Biology: Electrical, Mechanical & Optical Properties (Kluwer Academic Publishers, New York, 2004).Google Scholar
  3. 3.
    3. Nguyen Que Huong and Joseph L. Birman, “Origin of polarization in polar nanocrystals,” J. Chem. Phys., 108, 1769 (1998).CrossRefGoogle Scholar
  4. 4.
    4. Sean A. Blanton et al., “Dielectric dispersion measurements of CdSe nanocrystal colloids: Observation of permanent dipole moment,” Phys. Rev. Lett, 79, 865 (1997).CrossRefGoogle Scholar
  5. 5.
    5. P.E. Lippens and M. Lannoo, “Calculation of the band gap for small CdS and ZnS crystallites,” Phys. Rev. B39, 10935 (1989).Google Scholar
  6. 6.
    6. Babak Kohanpour, “Electrical and Optical Properties of Colloidal Quantum Dots in Electrolytic Environmemts,” M.S. Thesis, University of Illinois at Chicago, July 2004: for triangular—well energies see, for example, Jasprit Singh, “Quantum Mechanics: Fundamentals and Applications to Technology,” (Wiley Interscience, New York, 1996).Google Scholar
  7. 7.
    7. Michael A. Stroscio, Mitra Dutta, Salvador Rufo, and Jianyong Yang, “Dispersion and Damping of Acoustic Phonons in Quantum Dots,” IEEE Transactions on Nanotechnology, 3, 32 (2004).CrossRefGoogle Scholar
  8. 8.
    8. G.B. Fields and R.L. Noble, “Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids,” Int’l. J. of Peptide and Protein Research, 35, 161 (1990).Google Scholar
  9. 9.
    9. Weng C. Chan and Peter D. White (eds.), FMOC Solid Phase Peptide Synthesis: A Practical Approach (Oxford University Press, Oxford, 2000).Google Scholar
  10. 10.
    10. M. Kruger, M.R. Buitelaar, T. Nussbaumer, and C. Schonenberger, “Electrochemical carbon nanotube field-effect transistor,” Applied Physics Letters, 78, 1291 (2000).CrossRefGoogle Scholar
  11. 11.
    11. Michael A. Stroscio and Mitra Dutta, Phonons in Nanostructures (Cambridge University Press, Cambridge, 2001).Google Scholar
  12. 12.
    12. Michael A. Stroscio, Mitra Dutta, Salvador Rufo, and Jianyong Yang, “Dispersion and Damping of Acoustic Phonons in Quantum Dots,” IEEE Transactions on Nanotechnology, 3, 32 (2004).CrossRefGoogle Scholar
  13. 13.
    13. E.W. Schlag, Sheh-Yi Shen, Dah-Yen Yang, H.L. Selzle, and S.H. Lin, “Charge Conductivity in Peptides: Dynamic Simulation of a Difunctional Model Supporting Experimental Data,” Proc. Natl. Acad. Sci. USA 97(3), 1068 (2002).CrossRefGoogle Scholar
  14. 14.
    14. Paunesku et al., “Biology of TiO2-oligonucleotide Nanocomposites,” Nature Biotechnology, 2, 343 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Michael A. Stroscio
    • 1
  • Mitra Dutta
    • 2
  • Dinakar Ramadurai
    • 3
  • Peng Shi
    • 3
  • Yang Li
    • 4
  • Milana Vasudev
    • 5
  • Dimitri Alexson
    • 6
  • Babak Kohanpour
    • 6
  • Akil Sethuraman
    • 7
  • Vikas Saini
    • 7
  • Amit Raichura
    • 8
  • Jianyong Yang
    • 8
  1. 1.Department of Bioengineering, Department of Electrical and Computer Engineering, Department of PhysicsUniversity of Illinois at Chicago 60607
  2. 2.Department of Electrical and Computer Engineering, Department of PhysicsUniversity of Illinois at Chicago 60607
  3. 3.Department of BioengineeringUniversity of Illinois at Chicago 60607
  4. 4.Department of Electrical and Computer EngineeringUniversity of Illinois at Chicago 60607
  5. 5.Department of BioengineeringUniversity of Illinois at Chicago 60607
  6. 6.Department of Electrical and Computer EngineeringUniversity of Illinois at Chicago 60607
  7. 7.Department of BioengineeringUniversity of Illinois at Chicago 60607
  8. 8.Department of Electrical and Computer EngineeringUniversity of Illinois at Chicago 60607

Personalised recommendations