Advertisement

Journal of Computational Electronics

, Volume 3, Issue 3–4, pp 429–433 | Cite as

High-Resolution Numerical Study of Conductance and Noise Imaging of Mesoscopic Devices

  • M. MacucciEmail author
  • P. Marconcini
Article
  • 32 Downloads

Abstract

We present a numerical approach, based on an optimized recursive Green’s function procedure, for the simulation of the imaging process performed by scanning a device with a negatively biased probe while monitoring its conductance, or, as we propose in this contribution, its shot noise. We discuss a few examples, for an adiabatic quantum dot and for mesoscopic cavities, studied over a 200 × 300 points discretization mesh. The effect of disorder associated with the random distribution of dopants is included in some of the simulations by means of a semi-analytical procedure for the evaluation of the screening from the 2DEG.

Keywords

conductance imaging mesoscopic cavity electron flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Topinka, B.J. LeRoy, R.M. Westervelt, S.E.J. Shaw, R. Fleischmann, E.J. Heller, K.D. Maranowski, and A.C. Gossard, “Coherent branched flow in a two-dimensional electron gas,” Nature, 410, 183 (2001).CrossRefPubMedGoogle Scholar
  2. 2.
    R. Crook, C.G. Smith, A.C. Graham, I. Farrer, H.E. Beere, and D.A. Ritchie, “Imaging fractal conductance fluctuations and scarred wave functions in a quantum billiard,” Phys. Rev. Lett., 91, 246803 (2003).CrossRefPubMedGoogle Scholar
  3. 3.
    A. Cresti, R. Farchioni, G. Grosso, and G. Pastori Pallavicini, “Investigation of spatial current imaging in mesoscopic systems,” J. Appl. Phys., 94, 1744 (2003).CrossRefGoogle Scholar
  4. 4.
    Guang-Ping He, Shi-Liang Zhu, Z.D. Wang, “Conductance of a quantum point contact in the presence of a scanning probe microscope tip,” Phys. Rev. B, 65, 205321 (2002).CrossRefGoogle Scholar
  5. 5.
    F. Sols, M. Macucci, U. Ravaioli, and Karl Hess, “Theory for a quantum modulated transistor,” J. Appl. Phys., 66, 3892 (1989).CrossRefGoogle Scholar
  6. 6.
    M. Macucci, A. Galick, and U. Ravaioli, “Quasi-three-dimensional Green’s-function simulation of coupled electron waveguides,” Phys. Rev. B, 52, 5210 (1995).CrossRefGoogle Scholar
  7. 7.
    M. Büttiker, “Scattering theory of current and intensity noise correlations in conductors and wave guides,” Phys. Rev. B, 46, 12485 (1992).CrossRefGoogle Scholar
  8. 8.
    R.A. Jalabert, J.L. Pichard, and C.W.J. Beenakker, “Universal quantum signature of chaos in ballistic transport,” Europhys. Lett., 27, 255 (1994).Google Scholar
  9. 9.
    S. Oberholzer, E.V. Sukhorukov, C. Strunk, C. Schönenberger, T. Heinzel, and M. Holland, “Shot noise by quantum scattering in chaotic cavities,” Phys. Rev. Lett., 86, 2114 (2001).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria dell’Informazione—Università di PisaPisaItaly

Personalised recommendations