Journal of Computational Electronics

, Volume 3, Issue 3–4, pp 157–160 | Cite as

A Legendre Polynomial Solver for the Langevin Boltzmann Equation

  • Christoph JungemannEmail author
  • Bernd Meinerzhagen


The first numerical solver for the Langevin-type Boltzmann transport equation is presented and it is based on a Legendre Polynomial expansion. In contrast to the well-known Monte Carlo method, this new approach allows the direct calculation of noise in the frequency domain. This makes it for the first time possible to access the RF and low frequency range without prohibitive CPU times. It is shown that for most noise calculations a Legendre Polynomial expansion up to the third order is required and that, on the other hand, terms higher than third order yield only negligible improvements. Excellent agreement with MC results verifies the implementation of the new solver.


electronic noise silicon Boltzmann transport equation Legendre polynomials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Bonani and G. Ghione, Noise in Semiconductor Devices, Modeling and Simulation, ser. Advanced Microelectronics (Springer, Berlin, Heidelberg, New York, 2001).Google Scholar
  2. 2.
    C. Moglestue, “Monte-Carlo particle modelling of noise in semiconductors,” in International Conference on Noise in Physical Systems and 1/f Fluctuations, (1983), p. 23.Google Scholar
  3. 3.
    C. Jungemann, B. Neinhüs, S. Decker, and B. Meinerzhagen, “Hierarchical 2-D DD and HD noise simulations of Si and SiGe devices: Part II—Results,” IEEE Trans. Electron Devices, 49(7), 1258 (2002).CrossRefGoogle Scholar
  4. 4.
    T. Gonzalez, J. Mateos, M.J. Martin-Martinez, S. Perez, R. Rengel, B.G. Vasallo, and D. Pardo, “Monte Carlo simulation of noise in electronic devices: limitations and perspectives,” in Proceedings of the 3rd International Conference on Unsolved Problems of Noise (2003), p. 496.Google Scholar
  5. 5.
    C. Jungemann, P. Graf, G. Zylka, R. Thoma, and W.L. Engl, “New highly efficient method for the analysis of correlation functions based on a spherical harmonics expansion of the BTE’s Green’s function,” in Proc. IWCE (Portland, Oregon, 1994), p. 45.Google Scholar
  6. 6.
    C.E. Korman and I.D. Mayergoyz, “Semiconductor noise in the framework of semiclassical transport,” Phys. Rev. B, 54, 17, 620 (1996).CrossRefGoogle Scholar
  7. 7.
    S. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge, Cambridge University Press, New York, Melbourne, 1996).Google Scholar
  8. 8.
    C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer, Wien, 1989).Google Scholar
  9. 9.
    C. Jungemann and B. Meinerzhagen, Hierarchical Device Simulation, ser. Computational Microelectronics, edited by S. Selberherr (Springer, Wien, New York, 2003).Google Scholar
  10. 10.
    N. Goldsman, C. Lin, Z. Han, and C. Huang, “Advances in the spherical harmonic-Boltzmann-Wigner approach to device simulation,” Superlattices and Microstructures, 27, 159 (2000).CrossRefGoogle Scholar
  11. 11.
    A. Gnudi, D. Ventura, G. Baccarani, and F. Odeh, “Two-dimensional MOSFET simulation by means of a multidimensional spherical harmonics expansion of the Boltzmann transport equation,” Solid-State Electron., 36, 575 (1993).CrossRefGoogle Scholar
  12. 12.
    K.A. Hennacy and N. Goldsman, “A Generalized Legendre polynimial/sparse matrix approach for determining the distribution function in non-polar semiconductors,” Solid-State Electron., 36, 869 (1993).CrossRefGoogle Scholar
  13. 13.
    F.H. Branin, “Network sensitivity and noise analysis simplified,” IEEE Transactions on Circuit Theory, 20, 285 (1973).Google Scholar
  14. 14.
    R. Stratton, “Diffusion of hot and cold electrons in semiconductor barriers,” Phys. Rev., 126, 2002 (1962).CrossRefGoogle Scholar
  15. 15.
    C. Jungemann, B. Neinhüs, and B. Meinerzhagen, “Hierarchical 2–D DD and HD noise simulations of Si and SiGe devices: Part I—Theory,” IEEE Trans. Electron Devices, 49(7), 1250 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  1. 1.NSTBraunschweigGermany

Personalised recommendations