Journal of Computational Electronics

, Volume 3, Issue 3–4, pp 149–155 | Cite as

Evolution of Current Transport Models for Engineering Applications

  • Andreas GehringEmail author
  • Siegfried Selberherr


An overview of models for the simulation of current transport in micro- and nanoelectronic devices within the framework of TCAD applications is presented. Starting from macroscopic transport models, currently discussed enhancements are specifically addressed. This comprises the inclusion of higher-order moments into the transport models, the incorporation of quantum correction and tunneling models up to dedicated quantum-mechanical simulators, and mixed approaches which are able to account for both, quantum interference and scattering. Specific TCAD requirements are discussed from an engineer’s perspective and an outlook on future research directions is given.


device simulation TCAD transport models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “International Technology Roadmap for Semiconductors - 2003 Edition,” (2003),
  2. 2.
    H. Iwai, “CMOS downsizing toward Sub-10 nm,” Solid-State Electron, 48(4), 497 (2004).CrossRefGoogle Scholar
  3. 3.
    F.O. Heinz et al., “Quantum transport phenomena and their modeling,” in Symposium on Nano Device Technology (2004) p. 2.Google Scholar
  4. 4.
    D.L. Scharfetter and H.K. Gummel, “Large-signal analysis of a silicon read diode oscillator,” IEEE Trans.Electron Devices, 16(1), 64 (1969).Google Scholar
  5. 5.
    S. Selberherr et al., “MINIMOS—A program package to facilitate MOS DEVICE DESIGN AND ANALYSIS,” in Numerical Analysis of Semiconductor Devices and Integrated Circuits (1979) p. 275.Google Scholar
  6. 6.
    M.R. Pinto, PISCES IIB, Stanford University (1985).Google Scholar
  7. 7.
    S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer (1984).Google Scholar
  8. 8.
    T. Grasser et al., “A review of hydrodynamic and energy-transport models for semiconductor device simulation,” Proc. IEEE, 91(2), 251 (2003).CrossRefGoogle Scholar
  9. 9.
    M.V. Fischetti and S.E. Laux, “Monte carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects,” Physical Review B, 38(14), 9721 (1988).CrossRefGoogle Scholar
  10. 10.
    T. Grasser et al., “Advanced transport models for sub-micrometer devices,” in Proc. Intl. Conf. on Simulation of Semiconductor Processes and Devices (2004), p. 8.Google Scholar
  11. 11.
    S. Jallepalli et al., “Electron and hole quantization and their impact on deep submicron silicon p- and n-MOSFET characteristics,” IEEE Trans.Electron Devices, 44(2), 297 (1997).CrossRefGoogle Scholar
  12. 12.
    D. Vasileska et al., “Scaled silicon MOSFET’s: Degradation of the total gate capacitance,” IEEE Trans.Electron Devices, 44(4), 584 (1997).CrossRefGoogle Scholar
  13. 13.
    E.M. Vogel et al., “A capacitance-voltage model for polysilicon-gated MOS devices including substrate quantization effects based on modification of the total semiconductor charge,” Solid-State Electron, 47, 1589 (2003).CrossRefGoogle Scholar
  14. 14.
    W. Hänsch et al., “Carrier transport near the Si/SiO2 interface of a MOSFET,” Solid-State Electron, 32(10), 839 (1989).CrossRefGoogle Scholar
  15. 15.
    M.J. van Dort et al., “A simple model for quantization effects in heavily-doped silicon MOSFETs at inversion conditions,” Solid-State Electron, 37(3), 411 (1994).CrossRefGoogle Scholar
  16. 16.
    C. Jungemann et al., “Improved modified local density approximation for modeling of size quantization in NMOSFETs,” in Proc. Intl. Conf. Modeling and Simulation of Microsystems (2001).Google Scholar
  17. 17.
    A. Gehring, Simulation of Tunneling in Semiconductor Devices, Dissertation, Techni-sche Universität Wien (2003).Google Scholar
  18. 18.
    C.S. Lent and D.J. Kirkner, “The quantum transmitting boundary method,” J. Appl. Phys., 67(10), 6353 (1990).CrossRefGoogle Scholar
  19. 19.
    W.R. Frensley, “Numerical evaluation of resonant states,” Superlattices & Microstructures, 11(3), 347 (1992).Google Scholar
  20. 20.
    R. Lake et al., “Single and multiband modeling of quantum electron transport through layered semiconductor devices,” J. Appl. Phys., 81(12), 7845 (1997).CrossRefGoogle Scholar
  21. 21.
    F.O. Heinz et al., “Full quantum simulation of silicon-on-insulator single-electron devices,” J. Computational Electronics, 1(1), 161 (2002).CrossRefGoogle Scholar
  22. 22.
    G. Curatola et al., “Modeling and simulation challenges for nanoscale MOSFETs in the ballistic limit,” Solid-State Electron, 48(4), 581 (2004).CrossRefGoogle Scholar
  23. 23.
    S.E. Laux et al., “Ballistic FET modeling using QDAME: Quantum device analysis by modal evaluation,” IEEE Trans. Nanotechnology, 1(4), 255 (2002).CrossRefGoogle Scholar
  24. 24.
    M. Sabathil et al., “Towards fully quantum mechanical 3D device simulations,” J.Computational Electronics, 1, 81 (2002).CrossRefGoogle Scholar
  25. 25.
    E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Physical Review, 40, 749 (1932).CrossRefGoogle Scholar
  26. 26.
    H. Kosina and M. Nedjalkov, “Wigner function based device modeling,” in Handbook of Theoretical and Computational Nanotechnology, Springer (2005).Google Scholar
  27. 27.
    A. Wettstein et al., “Quantum device-simulation with the density-gradient model on unstructured grids,” IEEE Trans.Electron Devices, 48(2), 279 (2001).CrossRefGoogle Scholar
  28. 28.
    T. Hoehr et al., “On density-gradient modeling of tunneling through insulators,” in Proc. Intl. Conf. on Simulation of Semiconductor Processes and Devices (2002) pp. 275–278.Google Scholar
  29. 29.
    L. Shifren et al., “A wigner function-based quantum ensemble monte carlo study of a resonant tunneling diode,” IEEE Trans. Electron Devices, 50(3), 769 (2003).CrossRefGoogle Scholar
  30. 30.
    B. Winstead and U. Ravaioli, “A quantum correction based on schrödinger equation applied to monte carlo device simulation,” IEEE Trans.Electron Devices, 50(2), 440 (2003).CrossRefGoogle Scholar
  31. 31.
    H. Kosina et al., “A Monte Carlo method seamlessly linking quantum and classical transport calculations,” J. Computational Electronics, 2(2–4), 147 (2002).CrossRefGoogle Scholar
  32. 32.
    Y. Li et al., “Modeling of quantum effects for ultrathin Oxide MOS structures with an effective potential,” IEEE Trans. Nanotechnology, 1(4), 238 (2002).CrossRefGoogle Scholar
  33. 33.
    K.Z. Ahmed et al., “On the evaluation of performance parameters of MOSFETs with alternative gate dielectrics,” IEEE Trans.Electron Devices, 50(12), 2564 (2003).CrossRefGoogle Scholar
  34. 34.
    A. Gehring and H. Kosina, “Wigner-function based simulation of classic and ballistic transport in scaled DG-MOSFETS USING THE MONTE CARLO METHOD,” in (2004).Google Scholar
  35. 35.
    J.-T. Park et al., “Pi-Gate SOI MOSFET,” IEEE Electron Device Lett, 22(8), 405 (2001).CrossRefGoogle Scholar
  36. 36.
    Institut für Mikroelektronik Techni-sche Universität Wien, Austria, MINIMOS-NT 2.1 User’s Guide (2004).Google Scholar
  37. 37.
    M. Duane, “TCAD needs and applications from a users perspective,” IEICE Trans.Electron, E82-C(6), 976 (1999).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  1. 1.Institute for MicroelectronicsViennaAustria

Personalised recommendations