Leveraging analytics to produce compelling and profitable film content

  • Ronny BehrensEmail author
  • Natasha Zhang Foutz
  • Michael Franklin
  • Jannis Funk
  • Fernanda Gutierrez-Navratil
  • Julian Hofmann
  • Ulrike Leibfried
Original Article


Producing compelling film content profitably is a top priority to the long-term prosperity of the film industry. Advances in digital technologies, increasing availabilities of granular big data, rapid diffusion of analytic techniques, and intensified competition from user-generated content and original content produced by subscription video on demand platforms have created unparalleled needs and opportunities for film producers to leverage analytics in content production. Built upon the theories of value creation and film production, this article proposes a conceptual framework of key analytic techniques that film producers may engage throughout the production process, such as script analytics, talent analytics, and audience analytics. The article further synthesizes the state-of-the-art research on and applications of these analytics, discuss the prospect of leveraging analytics in film production, and suggest fruitful avenues for future research with important managerial implications.


Entertainment analytics Big data Content production Film producer Film industry 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abadi, M. K., Staiano, J., Cappelletti, A., Zancanaro, M., & Sebe, N. (2013). Multimodal engagement classification for affective cinema. In 5th conference on affective computing and intelligent interaction (ACII) (pp. 411–416).Google Scholar
  2. Acheson, K., & Maule, C. J. (1994). Understanding Hollywood’s organization and continuing success. Journal of Cultural Economics,18(4), 271–300.CrossRefGoogle Scholar
  3. Acquisti, A., Leslie, K., & Loewenstein, G. (2012). The impact of relative standards on the propensity to disclose. Journal of Marketing Research,49(4), 160–174.CrossRefGoogle Scholar
  4. Adjerid, I., Acquisti, A., & Loewenstein, G. (2019). Choice architecture, framing, and cascaded privacy choices. Management Science,65(6), 2267–2290.Google Scholar
  5. Adjerid, I., Acquisti, A., Telang, R., Padman, R., & Adler-Milstein, J. (2016). The impact of privacy regulation and technology incentives: The case of health information exchanges. Management Science,62(4), 1042–1063.CrossRefGoogle Scholar
  6. Aguiar, L., & Waldfogel, J. (2018). Netflix: global hegemon or facilitator of frictionless digital trade? Journal of Cultural Economics,42(3), 419–445.CrossRefGoogle Scholar
  7. Anfer, O., & Wamba, S. F. (2019). Big data analytics and strategic marketing capabilities: impact on firm performance. In World conference on information systems and technologies (pp. 633–640). Cham: Springer.Google Scholar
  8. Asur, S., & Huberman, B. A. (2010). Predicting the future with social media. In Proceedings of the 2010 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (Vol. 1, pp. 492–499).Google Scholar
  9. Barbosu, S. (2017) Big data on the big screen: Revealing latent coherence among movies and its effect on box office. Academy of Management Proceedings.Google Scholar
  10. Barnett, S. B., & Cerf, M. (2017). A ticket for your thoughts: Method for predicting content recall and sales using neural similarity of moviegoers. Journal of Consumer Research,44(1), 160–181.Google Scholar
  11. Barney, J. B. (1997). Gaining and sustaining competitive advantage. Michigan: Addison-Wesley Publishing Company.Google Scholar
  12. Bart, Y., Shankar, V., Sultan, F., & Urban, G. (2005). Are the drivers and role of online trust the same for all web sites and consumers? A large–scale exploratory empirical study. Journal of Marketing,69(10), 133–152.CrossRefGoogle Scholar
  13. Bilasco, I. M., Lablack, A., Dahmane, A., & Danisman, T. (2015). Analysing user visual implicit feedback in enhanced TV scenarios. In L. Agapito, M. Bronstein, & C. Rother (Eds.), Computer Vision–ECCV 2014 Workshops (pp. 315–324)., Lecture notes in computer science Cham: Springer.CrossRefGoogle Scholar
  14. Blake, J. (2017). Second screen interaction in the cinema: Experimenting with transmedia narratives and commercializing user participation. Journal of Audience and Reception Studies,14(2), 526–544.Google Scholar
  15. Bozik, K., & Dimovski, V. (2019). Business intelligence and analytics for value creation: The role of absorptive capacity. International Journal of Information Management,46, 93–103.CrossRefGoogle Scholar
  16. Brandes, U., Hoefer, M., & Pich, C. (2006). Affiliation dynamics with an application to movie–actor biographies. In IEEEVGTC symposium on visualization (Ed.) (pp. 176–186).Google Scholar
  17. Brookey, R. A., & Zhang, Z. (2018). How Hollywood applies industrial strategies to counter market uncertainty: The issue of financing and exhibition. In Handbook of state aid for film (pp. 135–150). Cham: Springer.Google Scholar
  18. Bruneel, C., Guy, J. L., Haughton, D., Lemercier, N., McLaughlin, M. D., Mentzer, K., & Zhang, C. (2018). Movie analytics and the future of film finance. Are Oscars and box office revenue predictable? In Murschetz, P. C., Teichmann, R., & Karmasin, M. (Ed.), Handbook of state aid for film (pp. 551–578). Cham: Springer.Google Scholar
  19. Cabral, L., & Natividad, G. (2016). Box-office demand: The importance of being #1. The Journal of Industrial Economics,64(2), 277–294.CrossRefGoogle Scholar
  20. Campo, M., Hsieh, C. K., Nickens, M., Espinoza, J. J., Taliyan, A., Rieger, J., Ho, J., & Sherick, B. (2018). Analysis system for theatrical movie releases based on movie trailer deep video representation. 20th Century Fox. Research Paper. arXiv:1807.04465v1[cs.IR].
  21. Carr, A. (2013). Positive psychology: The science of happiness and human strengths. London: Routledge.CrossRefGoogle Scholar
  22. Castendyk, O. (2018). Tax incentive schemes for film production: A pivotal tool of film policy? In Handbook of state aid for film (pp. 597– 615). Cham: Springer.CrossRefGoogle Scholar
  23. Cattani, G., & Ferriani, S. (2008). A core/periphery perspective on individual creative performance: Social networks and cinematic achievements in the Hollywood film industry. Organization Science,19(6), 824–844.CrossRefGoogle Scholar
  24. Cattani, G., Ferriani, S., Mariani, M. M., & Mengoli, S. (2013). Tackling the “Galácticos” effect: Team familiarity and the performance of star–studded projects. Industrial and Corporate Change,22(6), 1629–1662.CrossRefGoogle Scholar
  25. Chamorro-Premuzic, T. (2016). Personality and individual differences. New York: Wiley.Google Scholar
  26. Charnley, J. W., Pease, A., & Colton, S. (2012). On the notion of framing in computational creativity. In International conference on computational creativity (pp. 77–81).Google Scholar
  27. Chellappa, R. K., & Shivendu, S. (2010). Mechanism design for “free” but “no free disposal” services: The economics of personalization under privacy concerns. Management Science,56(10), 1766–1780.CrossRefGoogle Scholar
  28. Chintagunta, P., Gopinath, S., & Venkataraman, S. (2010). The effects of online user reviews on movie box office performance: Accounting for sequential rollout and aggregation across local markets. Marketing Science,29(5), 944–957.CrossRefGoogle Scholar
  29. Chisholm, D. C., Fernández-Blanco, V., Ravid, S. A., & Walls, W. D. (2015). Economics of motion pictures: The state of the art. Journal of Cultural Economics,39(1), 1–13.CrossRefGoogle Scholar
  30. Cohen, M. (2017). Big data and service operations. Production and Operations Management,27(9), 1709–1723.CrossRefGoogle Scholar
  31. Conitzer, V., Curtis, R. T., & Wagman, L. (2012). Hide and seek: Costly consumer privacy in a market with repeat purchases. Marketing Science,31(2), 277–292.CrossRefGoogle Scholar
  32. Corts, K. (2001). The strategic effects of vertical market structure: Common agency and divisionalization in the US motion picture industry. Journal of Economics and Management Strategy,10(4), 509–528.CrossRefGoogle Scholar
  33. Dalton, J. T., & Leung, T. C. (2017). Strategic decision-making in Hollywood release gaps. Journal of International Economics,105, 10–21.CrossRefGoogle Scholar
  34. Davenport, T. H., Harris, J. G., & Morison, R. (2010). Analytics at work: Smarter decisions, better results. Cambridge: Harvard Business Press.Google Scholar
  35. Dawar, N., & Parker, P. (1994). Marketing universals: Consumers’ use of brand name, price, physical appearance, and retailer reputation as signals of product quality. Journal of Marketing,58(2), 81–95.Google Scholar
  36. De Vany, A., & Walls, W. D. (1996). Bose-Einstein dynamics and adaptive contracting in the motion picture industry. The Economic Journal,106(439), 1493–1514.CrossRefGoogle Scholar
  37. De Vany, A., & Walls, D. (2004). Motion picture profit, the stable Paretian hypothesis, and the curse of the superstar. Journal of Economic Dynamics and Control,28(6), 1035–1057.CrossRefGoogle Scholar
  38. Debande, O. (2018). Film finance: The role of private investors in the European film market. In P. C. Murschetz, R. Teichmann, & M. Karmasin (Eds.), Handbook of state aid for film (pp. 51–66). Cham: Springer.CrossRefGoogle Scholar
  39. Delen, D., Sharda, R., & Kumar, P. (2007). Movie forecast Guru: A Web–based DSS for Hollywood managers. Decision Support Systems,43(4), 1151–1170.CrossRefGoogle Scholar
  40. Deng, Z., Navarathna, R., Carr, P., Mandt, S., Yue, Y., Matthews, I., & Mori, G. (2017). Factorized variational autoencoders for modeling audience reactions to movies. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2577–2586).Google Scholar
  41. Duan, W., Gu, B., & Whinston, A. (2008). Do online reviews matter? An empirical investigation of panel data. Decision Support Systems,45(4), 1007–1016.CrossRefGoogle Scholar
  42. Einav, L. (2007). Seasonality in the US motion picture industry. The Rand Journal of Economics,38(1), 127–145.CrossRefGoogle Scholar
  43. Ekman, P., & Friesen, W. V. (1978). Facial action coding system: A technique for the measurement of facial movement. Palo Alto: Consulting Psychologists Press.Google Scholar
  44. Elberse, A. (2007). The power of stars: Do star actors drive the success of movies? Journal of marketing,71(4), 102–120.CrossRefGoogle Scholar
  45. Elberse, A., & Eliashberg, J. (2003). Demand and supply dynamics for sequentially released products in international markets: The case of motion pictures. Marketing Science,22(3), 329–354.CrossRefGoogle Scholar
  46. Eliashberg, J., Elberse, A., & Leenders, M. A. (2006). The motion picture industry: Critical issues in practice, current research, and new research directions. Marketing science,25(6), 638–661.CrossRefGoogle Scholar
  47. Eliashberg, J., Hui, S. K., & Zhang, Z. J. (2007). From story line to box office: A new approach for green–lighting movie scripts. Management Science,53(6), 881–893.CrossRefGoogle Scholar
  48. Eliashberg, J., Hui, S. K., & Zhang, Z. J. (2014). Assessing box office performance using movie scripts: A kernel–based approach. IEEE Transactions on Knowledge and Data Engineering,26(11), 2639–2648.CrossRefGoogle Scholar
  49. Finch, J., Horan, C., & Reid, E. (2015). The performativity of sustainability: making a conduit a marketing device. Journal of Marketing Management,31(1–2), 167–192.CrossRefGoogle Scholar
  50. Fontaine, G., Grece, C., & Pumares, J. M. (2018). Online video sharing: Offerings, audiences, economic aspects. Strasbourg: European Audiovisual Observatory.Google Scholar
  51. Foutz, N. (2017). Entertainment marketing. Foundations and Trends in Marketing,10(4), 15–333.CrossRefGoogle Scholar
  52. Foutz, N. Z., & Jank, W. (2010). Pre-release forecasting for motion pictures using functional shape analysis of virtual stock markets. Marketing Science,29(3), 568–579.CrossRefGoogle Scholar
  53. Galvão, M., & Henriques, R. (2018). Forecasting movie box office profitability. Journal of Information Systems Engineering & Management,3(3), 22.CrossRefGoogle Scholar
  54. Gardete, P. M., & Bart, Y. (2018). Tailored cheap talk: The effect of privacy policy on ad content and market outcomes. Marketing Science,37(5), 733–752.CrossRefGoogle Scholar
  55. Gaustad, T. (2018). How financing shapes a film project: Applying organizational economics to a case study in Norway. In Handbook of state aid for film (pp. 135–150). Cham: Springer.CrossRefGoogle Scholar
  56. Ghiassi, M., Lio, D., & Moon, B. (2015). Pre-production forecasting of movie revenues with a dynamic artificial neural network. Expert Systems with Applications,42(6), 3176–3193.CrossRefGoogle Scholar
  57. Goh, K., Hui, K., & Png, I. (2015). Privacy and marketing externalities: Evidence from do not call. Management Science,61(12), 2982–3000.CrossRefGoogle Scholar
  58. Goldman, W. (1983). Adventures in the screen trade. A personal view of Hollywood and screenwriting. New York: Warner Books.Google Scholar
  59. Gomez-Uribe, C. A., & Hunt, N. (2016). The Netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems,6(4), 13.Google Scholar
  60. Gopinath, S., Chintagunta, P., & Venkataraman, S. (2013). Blogs, advertising, and local–market movie box office performance. Management Science,59(12), 2635–2654.CrossRefGoogle Scholar
  61. Gordon, R., Gurrieri, L., & Chapman, M. (2015). Broadening an understanding of problem gambling: the lifestyle consumption community of sports betting. Journal of Business Research,68(10), 2164–2172.CrossRefGoogle Scholar
  62. Grantham, B. (2012). Film risk in US motion pictures. In M. Hjort (Ed.), Film and risk (pp. 197–209). Detroit: Wayne State University Press.Google Scholar
  63. Hababou, M., Amrouche, N., & Jedidi, K. (2016). Measuring economic efficiency in the motion picture industry: A data envelopment analysis approach. Customer Needs and Solutions,3(3–4), 144–158.CrossRefGoogle Scholar
  64. Hadida, A. L. (2003). Strategic assets, institutional factors and performance: An application of the resource based view and of new institutional economics to cinema projects in France and the United States (1988–1997). Unpublished doctoral dissertation. Jouy en Josas: HEC.Google Scholar
  65. Hadida, A. L. (2009). Motion picture performance: A review and research agenda. International Journal of Management Reviews,11(3), 297–335.CrossRefGoogle Scholar
  66. Hanjalic, A., & Li–Qun, X. (2005). Affective video content representation and modeling. IEEE Transaction on Multimedia,7(1), 143–154.CrossRefGoogle Scholar
  67. Hassoun, D. (2014). Tracing attentions: toward an analysis of simultaneous media use. Television and New Media,15(4), 271–288.CrossRefGoogle Scholar
  68. Haughton, D., McLaughlin, M. D., Mentzer, K., & Zhang, C. (2014). Movie analytics: Visualization of the co–starring network. In 2014 IEEE 4th symposium on large data analysis and visualization (LDAV) (pp. 115–116).Google Scholar
  69. Hennig-Thurau, T. (2004). Spielfilme als anlageobjekte. Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung,56(2), 171–188.CrossRefGoogle Scholar
  70. Hennig-Thurau, T., & Houston, M. (2018). Entertainment science. Heidelberg: Springer.Google Scholar
  71. Hennig-Thurau, T., Houston, M., & Heitjans, T. (2009). Conceptualizing and measuring the monetary value of brand extensions: The case of motion pictures. Journal of Marketing,73(4), 167–183.CrossRefGoogle Scholar
  72. Hennig-Thurau, T., Houston, M. B., & Sridhar, S. (2006). Can good marketing carry a bad product? Evidence from the motion picture industry. Marketing letters.,17(3), 205–219.CrossRefGoogle Scholar
  73. Hennig–Thurau, T., Völckner, F., Clement, M., & Hofmann. J. (2013). An ingredient branding approach to determine the financial value of stars: The case of motion pictures. SSRN Working Paper.
  74. Hennig-Thurau, T., Walsh, G., & Wruck, O. (2001). An investigation into the factors determining the success of service innovations: The case of motion pictures. Academy of Marketing Science Review,6(1), 1–23.Google Scholar
  75. Hennig-Thurau, T., Wiertz, C., & Feldhaus, F. (2015). Does Twitter matter? The impact of microblogging word of mouth on consumers’ adoption of new movies. Journal of the Academy of Marketing Science,43(3), 375–394.CrossRefGoogle Scholar
  76. Hennig-Thurau, T., & Wruck, O. (2000). Warum wir ins Kino gehen–Erfolgsfaktoren von Kinofilmen. Marketing ZFP,22(3), 241–258.CrossRefGoogle Scholar
  77. Hofmann, J., Clement, M., Völckner, F., & Hennig-Thurau, T. (2017). Empirical generalizations on the impact of stars on the economic success of movies. International Journal of Research in Marketing,34(2), 442–461.CrossRefGoogle Scholar
  78. Houston, M. B., Kupfer, A. K., Hennig-Thurau, T., & Spann, M. (2018). Pre-release consumer buzz. Journal of the Academy of Marketing Science,46(2), 338–360.CrossRefGoogle Scholar
  79. Humphreys, A., & Wang, R. J. H. (2017). Automated text analysis for consumer research. Journal of Consumer Research,44(6), 1274–1306.CrossRefGoogle Scholar
  80. Hunter, I. I. I., David, S., Smith, S., & Singh, S. (2016). Predicting box office from the screenplay: A text analytical approach. Journal of Screenwriting,7(2), 135–154.CrossRefGoogle Scholar
  81. Hur, M., Kang, P., & Cho, S. (2016). Box-office forecasting based on sentiments of movie reviews and Independent subspace method. Information Sciences,372, 608–624.CrossRefGoogle Scholar
  82. Jannach, D., Resnick, P., Tuzhilin, A., & Zanker, M. (2016). Recommender systems—beyond matrix completion. Communications of the ACM,59(11), 94–102.CrossRefGoogle Scholar
  83. Jansen, C. (2005). The performance of German motion pictures, profits and subsidies: Some empirical evidence. Journal of Cultural Economics,29(3), 191–212.CrossRefGoogle Scholar
  84. Jokela, T., Ojala, J., & Olsson, T. (2015). A diary study on combining multiple information devices in everyday activities and tasks. In CHI ‘15 proceedings of the 33rd annual ACM conference (pp. 3903–3912).Google Scholar
  85. Kalvenes, J., & Basu, A. (2006). Design of robust business–to–business electronic marketplaces with guaranteed privacy. Management Science,52(11), 1721–1736.CrossRefGoogle Scholar
  86. Kim, E., Aribarg A., & Foutz, N. Z. (2019). How shared consumption enhances experiences. Working paper. Google Scholar
  87. Kim, T., Hong, J., & Kang, P. (2015). Box office forecasting using machine learning algorithms based on SNS data. International Journal of Forecasting,31(2), 364–390.CrossRefGoogle Scholar
  88. Kim, H., Katerenchuk, D., Billet, D., Huan, J., Park, H., & Li, B. (2019). Understanding actors and evaluating personae with Gaussian embeddings. In Association for the advancement of artificial intelligence.Google Scholar
  89. Kosterich, A. (2016). Reconfiguring the “Hits”: The new portrait of television program success in an era of big data. International Journal on Media Management,18(1), 43–58.CrossRefGoogle Scholar
  90. Kumar, V., Zhang, X., & Luo, A. (2014). Modeling Customer Opt–In and Opt-Out in a Permission-Based Marketing Context. Journal of Marketing Research,51(8), 403–419.CrossRefGoogle Scholar
  91. Kupfer, A. K., Pähler vor der Holte, N., Kübler, R. V., & Hennig-Thurau, T. (2018). The role of the partner brand’s social media power in brand alliances. Journal of Marketing,82(3), 25–44.CrossRefGoogle Scholar
  92. Lash, M. T., & Zhao, K. (2016). Early predictions of movie success: the who, what, and when of profitability. Journal of Management Information Systems,33(3), 874–903.CrossRefGoogle Scholar
  93. Lee, S. Y., Qiu, L., & Whinston, A. (2018). Sentiment manipulation in online platforms: An analysis of movie tweets. Production and Operations Management,27(3), 393–416.CrossRefGoogle Scholar
  94. Lehmann, D. R., & Weinberg, C. B. (2000). Sales through sequential distribution channels: an application to movies and videos. Journal of Marketing,64(3), 18–33.CrossRefGoogle Scholar
  95. Liu, Y. (2006). Word of mouth for movies: Its dynamics and impact on box office revenue. Journal of Marketing,70(3), 74–89.CrossRefGoogle Scholar
  96. Liu, L., Dzyabura, D., & Mizik, N. (2018). Visual Listening: brand monitoring from consumer created images. Working paper. University of Colorado.Google Scholar
  97. Liu, A., Liu, Y., & Mazumdar, T. (2014). Star power in the eye of the beholder: A study of the influence of stars in the movie industry. Marketing Letters,25(4), 385–396.CrossRefGoogle Scholar
  98. Liu, X., Shi, S. W., Teixeira, T., & Wedel, M. (2018b). Video content marketing: The making of clips. Journal of Marketing,82(4), 86–101.CrossRefGoogle Scholar
  99. Lobato, R. (2018). Rethinking international TV flows research in the age of Netflix. Television and New Media,19(3), 241–256.CrossRefGoogle Scholar
  100. Lovallo, D., Clarke, C., & Camerer, C. (2012). Robust analogizing and the outside view: Two empirical tests of case–based decision making. Strategic Management Journal,33(5), 496–512.CrossRefGoogle Scholar
  101. Manovich, L. (2018). Digital traces in context| 100 billion data rows per second: Media analytics in the early 21st century. International Journal of Communication,12, 473–488.Google Scholar
  102. Marshall, P., Dockendorff, M., & Ibáñez, S. (2013). A forecasting system for movie attendance. Journal of Business Research,66(10), 1800–1806.CrossRefGoogle Scholar
  103. Mayer, C. S., & White, C. H., Jr. (1969). The law of privacy and marketing research. Journal of Marketing,33(4), 1–4.CrossRefGoogle Scholar
  104. McKenzie, J. (2012). The economics of movies: A literature survey. Journal of Economic Surveys,26(1), 42–70.CrossRefGoogle Scholar
  105. McKenzie, J. (2013). Predicting box office with and without markets: Do internet users know anything? Information Economics and Policy,25(2), 70–80.CrossRefGoogle Scholar
  106. Milgram, P., & Kishino, F. (1995). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems,77(12), 1321–1329.Google Scholar
  107. Miller, D., & Shamsie, J. (1996). The resource–based view of the firm in two environments: The Hollywood film studios from 1936 to 1965. Academy of Management Journal,39(3), 519–543.Google Scholar
  108. Miller, D., & Shamsie, J. (2001). Learning across the life cycle: experimentation and performance among the Hollywood studio heads. Strategic Management Journal,22(8), 725–745.CrossRefGoogle Scholar
  109. Miller, A. R., & Tucker, C. (2018). Privacy protection, personalized medicine, and genetic testing. Management Science,64(10), 4648–4668.CrossRefGoogle Scholar
  110. Napoli, P. (2010). Audience evolution: New technologies and the transformation of media audiences. New York: Columbia University Press.Google Scholar
  111. Napoli, P. M. (2013). The algorithm as institution: Toward a theoretical framework for automated media production and consumption. McGannon Center Working Paper Series, (pp. 26), Fordham University Donald McGannon Communication Research Centre.Google Scholar
  112. Noam, E. M. (2018). Managing media and digital organizations. Cham: Palgrave Macmillan.Google Scholar
  113. Opitz, C., & Hofmann, K. H. (2014). Adverse selection and moral hazard in equity partnerships: Evidence from Hollywood’s slate financing agreements. Journal of Economics and Management Strategy,23(4), 811–838.CrossRefGoogle Scholar
  114. Packard, G., Aribarg, A., Eliashberg, J., & Foutz, N. Z. (2016). The role of network embeddedness in film success. International Journal of Research in Marketing,33(2), 328–342.CrossRefGoogle Scholar
  115. Palmgreen, P., & Rayburn, J. D. (1982). Gratifications sought and media exposure: An expectancy value model. Communication Research,9(4), 561–580.CrossRefGoogle Scholar
  116. Pennock, D. M., Lawrence, S., Giles, C. L., & Nielsen, F. A. (2001). The real power of artificial markets. Science,291(5506), 987–988.CrossRefGoogle Scholar
  117. Peukert, C. (2018). The next wave of digital technological change and the cultural industries. Journal of Cultural Economics,43, 189–210.CrossRefGoogle Scholar
  118. Phillips, R. (2004). The global export of risk: Finance and the film business. Competition and Change,8(2), 105–136.CrossRefGoogle Scholar
  119. PwC. (2018). Global entertainment & media Outlook 2018–2022. New York: PricewaterhouseCoopers.Google Scholar
  120. Ramanathan, S., & McGill, A. (2007). Consuming with others: Social influences on moment–to–moment and retrospective evaluations of an experience. Journal of Consumer Research,34(4), 506–524.CrossRefGoogle Scholar
  121. Ramdarshan Bold, R. M. (2016). The return of the social author: Negotiating authority and influence on Wattpad. Convergence: The International Journal of Research into New Media Technologies,24(2), 117–136.CrossRefGoogle Scholar
  122. Ratner, R. K., & Hamilton, R. W. (2015). Inhibited from bowling alone. Journal of Consumer Research,42(2), 266–283.Google Scholar
  123. Ravid, S. A. (1999). Information, blockbusters, and stars: a study of the film industry. Journal of Business,72, 463–492.CrossRefGoogle Scholar
  124. Ravid, S. A. (2013). What makes movies tick Ivory tower insights, studio views and research directions. In Burger–Helmchen, T. (Ed.), The economics of creativity: Ideas, firms and markets (pp. 60–339).Google Scholar
  125. Ravid, S. A. (2018). The economics of film financing: an introduction. In P. C. Murschetz, R. Teichmann, & M. Karmasin (Eds.), Handbook of state aid for film (pp. 39–49). Cham: Springer.CrossRefGoogle Scholar
  126. Ravid, S. A., & Basuroy, S. (2004). Managerial objectives, the R–rating puzzle, and the production of violent films. Journal of Business,77, 155–192.CrossRefGoogle Scholar
  127. Rhee, T. G., & Zulkernine, F. H. (2016). Predicting movie box office profitability: A neural network approach. In 15th IEEE international conference on machine learning and applications (ICMLA) (pp. 665–670).Google Scholar
  128. Rooksby, J., Smith, T. E., Morrison, A., Rost, M., & Chalmers, M. (2015). Configuring attention in the multiscreen living room. In ECSCW 2015: Proceedings of the 14th European conference on computer supported cooperative work (pp. 243–261).Google Scholar
  129. Schneider, M. J., Jagpal, S., Gupta, S., Li, S., & Yu, Y. (2018). A flexible method for protecting marketing data: An application to point–of–sale data. Marketing Science,37(1), 153–171.CrossRefGoogle Scholar
  130. Schweidel, D. A., & Moe, W. (2016). Binge watching and advertising. Journal of Marketing,80(5), 1–19.CrossRefGoogle Scholar
  131. Sharma, R., Shanks, G., Seddon, P., & Reynolds, P. (2010). The impact of strategy and maturity on business analytics and firm performance: a review and research agenda. Association for Information Systems.
  132. Simon, F. M., & Schroeder, R. (2019). Big data goes to Hollywood: The emergence of big data as a tool in the American film industry. In J. Hunsinger, M. Allen, & L. Klastrup (Eds.), Second international handbook of internet research. Dordrecht: Springer.Google Scholar
  133. Soleymani, M., Pantic, M., & Pun, T. (2012). Multimodal emotion recognition in response to videos. IEEE Transactions on Affective Computing (TAC),3(2), 211–223.CrossRefGoogle Scholar
  134. Spann, M., & Skiera, B. (2003). Internet-based virtual stock markets for business forecasting. Management Science,49, 1310–1326.CrossRefGoogle Scholar
  135. Tashman, P., Marano, V., & Babin, J. (2019). Firm-specific assets and the internationalization–performance relationship in the US movie studio industry. International Business Review,28(4), 785–795.CrossRefGoogle Scholar
  136. Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal,18(7), 509–533.CrossRefGoogle Scholar
  137. Toubia, O., Iyengar, G., Bunnell, R., & Lemaire, A. (2019). Extracting features of entertainment products: A guided LDA approach informed by the psychology of media consumption. Journal of Marketing Research,56(1), 18–36.CrossRefGoogle Scholar
  138. Townsend, N. (2018). Working title films and universal: The integration of a British production company into a Hollywood studio. Journal of British Cinema and Television,15(2), 179–203.CrossRefGoogle Scholar
  139. Tucker, C. E. (2014). Social networks, personalized advertising, and privacy controls. Journal of Marketing Research,51(10), 546–562.CrossRefGoogle Scholar
  140. Van Roy, B., & Yan, X. (2010). Manipulation robustness of collaborative filtering. Management Science,56(11), 1911–1929.CrossRefGoogle Scholar
  141. Verhoef, P. C., Kooge, E., & Walk, N. (2016). Creating value with big data analytics: Making smarter marketing decisions. London: Routledge.CrossRefGoogle Scholar
  142. Von Rimscha, M. B. (2009). Managing risk in motion picture project development. Journal of Media Business Studies,6(4), 75–101.CrossRefGoogle Scholar
  143. Walls, W. D. (2005a). Modelling heavy tails and skewness in film returns. Applied Financial Economics,15(17), 1181–1188.CrossRefGoogle Scholar
  144. Walls, W. D. (2005b). Modeling movie success when ‘nobody knows anything’: Conditional stable-distribution analysis of film returns. Journal of Cultural Economics,29(3), 177–190.CrossRefGoogle Scholar
  145. Walraven, J. (2018). Data science and entertainment production. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 2879–2879).Google Scholar
  146. Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research,70(1), 356–365.CrossRefGoogle Scholar
  147. Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data–rich environments. Journal of Marketing,80(11), 97–121.CrossRefGoogle Scholar
  148. Yang, J., & Yecies, B. (2016). Mining Chinese social media UGC: A big data framework for analyzing Douban movie reviews. Journal of Big Data,3(3), 1–23.Google Scholar
  149. Yeap, J., Ignatius, J., & Ramayah, T. (2014). Determining consumers’ most preferred eWOM platform for movie reviews: A fuzzy analytic hierarchy process approach. Computers in Human Behavior,31, 250–258.CrossRefGoogle Scholar
  150. Yeh, S. Y. (2013). When do original movies dominate sequels? The moderating effects of film types and product knowledge. Asia Pacific Management Review,18(3), 239–255.Google Scholar
  151. Young, S. M., Gong, J. J., & Van der Stede, W. A. (2008). The business of making movies. Strategic Finance,89(8), 26–32.Google Scholar
  152. Zhao, J., Wang, T., Yatskar, M., Cotterell, R., Ordonez, V., & Chang, K. (2019). Gender bias in contextualized word embeddings. In North American Chapter of the Association for Computational Linguistics.Google Scholar
  153. Zufryden, F. (1996). Linking advertising to box office performance of new film releases. Journal of Advertising Research,36(4), 29–41.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Ronny Behrens
    • 1
    Email author
  • Natasha Zhang Foutz
    • 2
  • Michael Franklin
    • 3
  • Jannis Funk
    • 4
  • Fernanda Gutierrez-Navratil
    • 5
  • Julian Hofmann
    • 6
  • Ulrike Leibfried
    • 7
  1. 1.Chair for Marketing and MediaUniversity of MünsterMünsterGermany
  2. 2.McIntire School of CommerceUniversity of VirginiaCharlottesvilleUSA
  3. 3.Institute for Creative and Cultural Entrepreneurship (ICCE)Goldsmiths, University of LondonLondonUK
  4. 4.Film University Babelsberg KONRAD WOLFPotsdamGermany
  5. 5.Universidad Pública de NavarraPamplonaSpain
  6. 6.EM Normandie Business SchoolMétis LabLe Havre CedexFrance
  7. 7.Area 46 Development GmbHBerlinGermany

Personalised recommendations