Journal of Cultural Economics

, Volume 38, Issue 2, pp 191–205 | Cite as

A survey of allocation rules for the museum pass problem

  • Balbina Casas-Mendez
  • Vito FragnelliEmail author
  • Ignacio Garcìa-Jurado
Original Article


In this paper, we consider the problem, introduced by Ginsburgh and Zang (Games Econ Behav 43:322–325, 2003), of sharing the income from the sell of passes that allow the entrance in a set of museums. First, we recall some allocation rules and some properties presented in Ginsburgh and Zang (Mus Manag Curatorship 19:371–383, 2004), Béal and Solal (Rev Econ 61:1099–1109, 2010), Estévez-Fernández et al. (2010), and Casas-Méndez et al. (Eur J Oper Res 215:161–168, 2011). Then, we discuss them, finding the properties satisfied by each allocation rule. The analysis of a real-world example concludes the paper.


Museum pass problem Allocation rules Shapley value Bankruptcy 

JEL Classification

C71 D79 



The authors acknowledge the support of Direzione Settore Musei del Comune di Genova, in particular through Enrica Carelli, Giuliano Doria and Gabriella Taravacci. The authors acknowledge two anonymous reviewers for their useful comments.


  1. Aumann, R., & Maschler, M. (1985). Game theoretic analysis of a bankruptcy problem from the Talmud. Journal of Economic Theory, 36, 195–213.CrossRefGoogle Scholar
  2. Béal, S., & Solal, P. (2010). Règles d’allocation pour les programmes de pass culturel. Revue Economique, 61, 1099–1109 (in French).CrossRefGoogle Scholar
  3. Casas-Méndez, B., Fragnelli, V., & García-Jurado, I. (2011). Weighted bankruptcy rules and the museum pass problem. European Journal of Operational Research, 215, 161–168.CrossRefGoogle Scholar
  4. Curiel, I., Maschler, M., & Tijs, S. (1987). Bankruptcy games. Zeitschrift für Operations Research (Now: Mathematical Methods of Operations Research), 31, 143–159.Google Scholar
  5. Estévez-Fernández, A., Borm, P., & Hamers, H. (2010). A note on passepartout problems. Discussion Paper TI 2010-031/1. The Netherlands: Tinbergen Institute.Google Scholar
  6. Ginsburgh, V., & Zang, I. (2003). The museum pass game and its value. Games and Economic Behavior, 43, 322–325.CrossRefGoogle Scholar
  7. Ginsburgh, V., & Zang, I. (2004). Sharing the income of a museum pass program. Museum Management and Curatorship, 19, 371–383.CrossRefGoogle Scholar
  8. Herrero, C., & Villar, A. (2001). The three musketeers: Four classical solutions to bankruptcy problems. Mathematical Social Sciences, 42, 307–328.CrossRefGoogle Scholar
  9. Littlechild, S. C., & Owen, G. (1973). A simple expression for the Shapley value in a special case. Management Science, 20, 370–372.CrossRefGoogle Scholar
  10. Moulin, H. (1987). Equal or proportional division of a surplus, and other methods. International Journal of Game Theory, 16, 161–186.CrossRefGoogle Scholar
  11. Moulin, H. (2000). Priority rules and other asymmetric rationing methods. Econometrica, 68, 643–684.CrossRefGoogle Scholar
  12. O’Neill, B. (1982). A problem of rights arbitration from the Talmud. Mathematical Social Sciences, 2, 345–371.CrossRefGoogle Scholar
  13. Shapley, L. S. (1953). A value for n-person games. In H. Kuhn & A. Tucker (Eds.), Contributions to the theory of games II, pp. 307–317.Google Scholar
  14. Thomson, W. (2003). Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey. Mathematical Social Sciences, 45, 249–297.CrossRefGoogle Scholar
  15. Wang, Y. (2011). A museum cost sharing problem. American Journal of Operations Research, 1, 51–56.CrossRefGoogle Scholar
  16. Young, H. P. (1988). Distributive justice in taxation. Journal of Economic Theory, 44, 321–335.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Balbina Casas-Mendez
    • 1
  • Vito Fragnelli
    • 2
    Email author
  • Ignacio Garcìa-Jurado
    • 3
  1. 1.Departamento de Estatística e IO, Facultade de MatemáticasUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of Sciences and Technological InnovationUniversity of Eastern PiedmontAlessandriaItaly
  3. 3.Departamento de Matemáticas, Facultade de InformáticaUniversidade da CoruñaCoruñaSpain

Personalised recommendations