Journal of Cultural Economics

, Volume 36, Issue 2, pp 91–112 | Cite as

A count data travel cost model of theatre demand using aggregate theatre booking data

  • K. G. Willis
  • J. D. Snowball
  • C. Wymer
  • José Grisolía
Original Article

Abstract

Theatres have a market bounded by the distance theatregoers are willing to travel to see shows and productions. This paper uses count data models (Poisson regression and negative binomial models) to investigate the determinants of attendance at a regional theatre in England. It uses booking data for 29 theatrical productions supplied by the theatre, and matches this, using postcodes, with census socio-economic information on household characteristics. Socio-economic and travel cost (distance) are used to explore theatregoers attendance, and also to estimate consumer surplus, and to assess whether consumer surplus on ticket sales exceeds the annual government subsidy to the theatre.

Keywords

Travel cost Theatre demand Attendance Consumer surplus 

References

  1. Alberini, A., & Longo, A. (2006). Combining the travel cost and contingent behaviour methods to value cultural heritage sites: Evidence from Armenia. Journal of Cultural Economics, 30, 287–304.CrossRefGoogle Scholar
  2. Ateca-Amestoy, V. (2008). Determining heterogeneous behaviour for theatre attendance. Journal of Cultural Economics, 32, 127–151.CrossRefGoogle Scholar
  3. Bedate, A., herrero, L., & Sanz, J. (2004). Economic valuation of the cultural heritage: Application to four case studies in Spain. Journal of Cultural Heritage, 5, 101–111.CrossRefGoogle Scholar
  4. Bille-Hansen, T. (1997). The willingness-to-pay for the Royal Theatre in Copenhagen as a public good. Journal of Cultural Economics, 21, 1–28.CrossRefGoogle Scholar
  5. Blamey, R. K., Bennett, J. W., & Morrison, M. D. (1999). Yea saying in contingent valuation surveys. Land Economics, 75(1), 126–141.CrossRefGoogle Scholar
  6. Borgonovi, F. (2004). Performing arts attendance: An economic approach. Applied Economics, 36, 1871–1885.CrossRefGoogle Scholar
  7. Boter, J., Rouwendal, J., & Wedel, M. (2005). Employing travel time to compare the value of competing cultural organisations. Journal of Cultural Economics, 29, 19–33.CrossRefGoogle Scholar
  8. Boxall, P., Englin, J., & Adamowicz, V. (2003). Valuing aboriginal artefacts: A combined revealed-stated preference approach. Journal of Environmental Economics and Management, 45, 213–230.CrossRefGoogle Scholar
  9. Cameron, A. C., & Trivedi, P. K. (1986). Econometric models based on count data: Comparisons and applications of some estimators and tests. Journal of Applied Econometrics, 1, 29–53.CrossRefGoogle Scholar
  10. Cameron, A. C., & Trivedi, P. K. (1996). Count data models for financial data. In G. S. Maddala & C. R. Rao (Eds.), Handbook of statistics (Vol. 14). Amsterdam: Elsevier.Google Scholar
  11. Clawson, M. (1959). Methods for measuring the demand for and value of outdoor recreation. Report No. 10. Resources for the Future, Washington DC.Google Scholar
  12. Clawson, M., & Knetsch, J. L. (1966). Economics of outdoor recreation. Baltimore: John Hopkins University Press.Google Scholar
  13. Colbert, F. (2003). Entrepreneurship and leadership in marketing the arts. International Journal of Arts Management, 6, 1.Google Scholar
  14. Corning, J., & Levy, A. (2002). Demand for live theatre with market segmentation and seasonality. Journal of Cultural Economics, 26, 217–235.CrossRefGoogle Scholar
  15. Cuccia, T. (2003). Contingent valuation. In R. Towse (Ed.), A handbook of cultural economics. Cheltenham: Edward Elgar.Google Scholar
  16. Department for Transport (2009). Values of time and operating costs. TAG Unit 3.5.6. Transport Analysis Guidance, Department for Transport, London.Google Scholar
  17. Forrest, D., Grime, K., & Woods, R. (2000). Is it worth subsidising regional repertory theatre? Oxford Economic Papers, 52, 381–397.CrossRefGoogle Scholar
  18. Gayo-Cal, M. (2006). Leisure and participation in Britain. Cultural Trends, 15(2), 175–192.CrossRefGoogle Scholar
  19. Grisolia, J. M. & Willis K. G. (2010). An evening at the theatre: Using choice experiments to model preferences for theatre and theatrical productions. Applied Economics. December 6, 2010 (iFirst). doi:10.1080/00036841003742637.
  20. Gujarati, D. (2003). Basic econometrics. Boston: McGraw-Hill.Google Scholar
  21. Hellerstein, D. (1991). Using count data models in travel cost analysis with aggregate data. American Journal of Agricultural Economics, 73(3), 860–866.CrossRefGoogle Scholar
  22. Hellerstein, D. (1995). Welfare estimation using aggregate and individual-observation models: A comparison using Monte Carlo techniques. American Journal of Agricultural Economics, 77, 620–630.CrossRefGoogle Scholar
  23. Hoehn, J. P., & Randall, A. (1989). Too many proposals pass the benefit cost test. American Economic Review, 79, 544–551.Google Scholar
  24. Levy-Garboua, L., & Montmarquette, C. (2002). The demand for the arts. In R. Towse (Ed.), A handbook of cultural economics. Cheltenham: Edward Elgar.Google Scholar
  25. Martin, F. (1994). Determining the size of museum subsidies. Journal of Cultural Economics, 18, 255–270.CrossRefGoogle Scholar
  26. McKean, J. R., Johnson, D. M., & Walsh, R. G. (1995). Valuing time in travel cost demand analysis: An empirical investigation. Land Economics, 71(1), 96–105.CrossRefGoogle Scholar
  27. Needleman, L. (1976). Valuing other people’s lives. The Manchester School, 44, 309–342.CrossRefGoogle Scholar
  28. Perman, R., Ma, Y., McGilvray, J., & Common, M. (2003). Natural resource and environmental economics. London: Pearson.Google Scholar
  29. Poor, J., & Smith, J. (2004). Travel cost analysis of a cultural heritage site: The case of historic St. Mary’s City of Maryland. Journal of Cultural Economics, 28, 217–229.CrossRefGoogle Scholar
  30. Prayaga, P., Rolfe, J., & Sinden, J. (2006). A travel cost analysis of the value of special events: Gemfest in Central Queensland. Tourism Economics, 12, 403–420.CrossRefGoogle Scholar
  31. Rouwendal, J., & Boter, J. (2009). Assessing the value of museums with a combined discrete choice/count data model. Applied Economics, 41, 1417–1436.CrossRefGoogle Scholar
  32. Seaman, B. (2005). Attendance and public participation in the performing arts: A review of the empirical literature. Andrew Young School of Policy Studies, Georgia State University, Working paper 05-03.Google Scholar
  33. Smith, V. K., & Karou, Y. (1990). Signals or noise? Explaining the variation in recreation benefit estimates. American Journal of Agricultural Economics, 72(2), 419–433.CrossRefGoogle Scholar
  34. Snowball, J. (2008). Measuring the value of culture: Methods and examples in cultural economics. Germany: Springer.Google Scholar
  35. Throsby, D. (1994). The production and consumption of the arts: A view of cultural economics. Journal of Economic Literature, 32(3), 1–28.Google Scholar
  36. Throsby, D. (2001). Economics and culture. Cambridge: Cambridge University Press.Google Scholar
  37. Willis, K. G. (1991). The recreational value of the forestry commission estate in Great Britain: A Clawson-Knetsch travel cost analysis. Scottish Journal of Political Economy, 38, 58–75.CrossRefGoogle Scholar
  38. Willis, K. G., & Garrod, G. D. (1991a). An individual travel-cost method of evaluating forest recreation. Journal of Agricultural Economics, 42, 33–42.CrossRefGoogle Scholar
  39. Willis, K. G., & Garrod, G. D. (1991b). Valuing open access recreation on inland waterways: On-site recreation surveys and selection effects. Regional Studies, 25(6), 511–524.CrossRefGoogle Scholar
  40. Willis, K., & Snowball, J. (2009). Investigating how the attributes of live theatre productions influence consumption choices using conjoint analysis: The example of the National Arts Festival, South Africa. Journal of Cultural Economics, 33(3), 167–184.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • K. G. Willis
    • 1
  • J. D. Snowball
    • 2
  • C. Wymer
    • 1
  • José Grisolía
    • 3
  1. 1.School of Architecture, Planning and LandscapeUniversity of NewcastleNewcastle upon TyneUK
  2. 2.Department of EconomicsRhodes UniversityGrahamstownSouth Africa
  3. 3.Departamento de Analisis Economico AplicadoUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations