Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Software to obtain spatially localized functions from different radial functions

  • 31 Accesses

Abstract

We have developed an algorithm that enables simplified box orbital functions (SBO) to be obtained with optimized coefficients by fitting them to functions of many types. SBOs are a linear combination of radial functions useful in quantum chemistry calculations which can be spatially restricted (defined in \(0 \le r < r_{0}\) interval, and zero for \(r \ge r_{0}\)). The algorithm proposed makes it possible to obtain the optimal radius \(r_{0}\) and the coefficients of the SBOs of any number of terms from the functions to be fitted, but also allows the user to define a particular radius r and calculate the coefficients of the combination of terms of the SBOs. SBOs have proved to be useful in the calculation of molecular properties, and can reduce the complexity of the integral calculations, especially in huge chemical systems such as atomic clusters. These types of functions are also adequate for studying confined systems such as molecules in solution or big chemical systems such as atomic clusters. In addition, while carrying out the examples presented in this study we have tested the suitability of SBO functions to calculate molecular reactivity, showing that the basis functions provide results as good as the basis sets typically used for this kind of calculations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    García V, Zorrilla D, Fernández M (2014) Int J Quantum Chem 114:1581

  2. 2.

    García V, Sánchez J, Zorrilla D, Fernández M (2016) Int J Quantum Chem 116:1303

  3. 3.

    García V, Zorrilla D, Sánchez-Márquez J, Fernández M (2018) Mol Phys 116:2310

  4. 4.

    Lepetit MB, Lafon L, Lafage X (1997) Int J Quantum Chem 64:411

  5. 5.

    Steiner E, Sykes S (1972) Mol Phys 23:643

  6. 6.

    McKemmish LK, Gilbert ATB, Gill PMW (2014) J Chem Theory Comput 10:4369

  7. 7.

    McKemmish LK (2015) J Chem Phys 142:134104

  8. 8.

    McKemmish LK, Gilbert ATB (2015) J Chem Theory Comput 11:8

  9. 9.

    García V, Zorrilla D, Fernández M (2013) Int J Quantum Chem 113:2172

  10. 10.

    Miertuš S, Tomasi J (1982) Chem Phys 65:239–245

  11. 11.

    Pascual-Ahuir JL, Silla E, Tuñón I (1994) J Comp Chem 15:1127–1138

  12. 12.

    Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

  13. 13.

    Cossi M, Barone V, Mennucci B, Tomasi J (1998) Chem Phys Lett 286:253–260

  14. 14.

    Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

  15. 15.

    Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158

  16. 16.

    Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

  17. 17.

    Barone V, Cossi M, Tomasi J (1998) J Comp Chem 19:404–417

  18. 18.

    Cossi M, Barone V, Robb MA (1999) J Chem Phys 111:5295–5302

  19. 19.

    Cancès E, Mennucci B (2001) J Chem Phys 114:4744–4745

  20. 20.

    Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

  21. 21.

    Tomasi J, Mennucci B, Cancès E (1999) J Mol Struct (Theochem) 464:211–226

  22. 22.

    Cossi M, Rega N, Scalmani G, Barone V (2001) J Chem Phys 114:5691–5701

  23. 23.

    Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54

  24. 24.

    Cossi M, Rega N, Scalmani G, Barone V (2003) J Comp Chem 24:669–681

  25. 25.

    Chipman DM (2000) J Chem Phys 112:5558–5565

  26. 26.

    Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) J Phys Chem 100:16098–16104

  27. 27.

    Kirkwood JG (1934) J Chem Phys 2:351

  28. 28.

    Onsager L (1936) J Am Chem Soc 58:1486–1493

  29. 29.

    Wong MW, Frisch MJ, Wiberg KB (1991) J Am Chem Soc 113:4776–4782

  30. 30.

    Wong MW, Wiberg KB, Frisch MJ (1991) J Chem Phys 95:8991–8998

  31. 31.

    Roetti C, Clementi E (1974) J Chem Phys 60:4725

  32. 32.

    UCA-SBO software, downloadable at: Linux Version: https://www2.uca.es/dept/quimica_fisica/software/uca_sbo.tar.gz. Windows Version: https://www2.uca.es/dept/quimica_fisica/software/uca_sbo.exe

  33. 33.

    FORTRAN Programming Language web site: https://groups.umd.umich.edu/cis/course.des/cis400/fortran/fortran.html

  34. 34.

    WOLFRAM web site: https://www.wolfram.com/

  35. 35.

    Mathworks web site: https://es.mathworks.com/

  36. 36.

    Maplesoft, Mathematics-based software & services for education, engineering, and research: https://www.maplesoft.com/

  37. 37.

    Gaussian 09W, Revision A.02-SMP, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc. Wallingford CT

  38. 38.

    García V, Zorrilla D, Sánchez-Márquez J, Fernández M (2017) J Mol Model 23:165

  39. 39.

    Stewart RF (1970) J Chem Phys 52:431

  40. 40.

    Here WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

  41. 41.

    Klamt A, Jonas V (1996) J Chem Phys 105:9972

  42. 42.

    Sánchez-Márquez J, Zorrilla D, García V, Fernández M (2018) J Mol Model 24:25

  43. 43.

    Clementi E, Raimondi DL (1963) J Chem Phys 38:2686

Download references

Author information

Correspondence to David Zorrilla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2100 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Márquez, J., García, V., Zorrilla, D. et al. Software to obtain spatially localized functions from different radial functions. J Comput Aided Mol Des 34, 267–280 (2020). https://doi.org/10.1007/s10822-019-00272-2

Download citation

Keywords

  • Basis set generation
  • Spatially localized functions
  • Non-standard basis-set
  • Confined systems
  • SBO