Advertisement

Docking rigid macrocycles using Convex-PL, AutoDock Vina, and RDKit in the D3R Grand Challenge 4

  • Maria Kadukova
  • Vladimir Chupin
  • Sergei GrudininEmail author
Article
  • 74 Downloads

Abstract

The D3R Grand Challenge 4 provided a brilliant opportunity to test macrocyclic docking protocols on a diverse high-quality experimental data. We participated in both pose and affinity prediction exercises. Overall, we aimed to use an automated structure-based docking pipeline built around a set of tools developed in our team. This exercise again demonstrated a crucial importance of the correct local ligand geometry for the overall success of docking. Starting from the second part of the pose prediction stage, we developed a stable pipeline for sampling macrocycle conformers. This resulted in the subangstrom average precision of our pose predictions. In the affinity prediction exercise we obtained average results. However, we could improve these when using docking poses submitted by the best predictors. Our docking tools including the Convex-PL scoring function are available at https://team.inria.fr/nano-d/software/.

Keywords

Protein–ligand docking Ensemble docking Macrocycle modeling Convex-PL Conformer generation D3R Drug Design Data Resource Scoring function 

Notes

Acknowledgements

The authors would like to thank Ivan Gushchin from MIPT Moscow for providing his expertise in crystallography. This work was partially supported by the Ministry of Education and Science of the Russian Federation (Grant No. 6.3157.2017).

References

  1. 1.
    Jusot M, Stratmann D, Vaisset M, Chomilier J, Cortes J (2018) Exhaustive exploration of the conformational landscape of small cyclic peptides using a robotics approach. J Chem Inf Model 58(11):2355–2368PubMedCrossRefGoogle Scholar
  2. 2.
    Sindhikara D, Spronk SA, Day T, Borrelli K, Cheney DL, Posy SL (2017) Improving accuracy, diversity, and speed with prime macrocycle conformational sampling. J Chem Inf Model 57(8):1881–1894PubMedCrossRefGoogle Scholar
  3. 3.
    Smith RD, Damm-Ganamet KL, Dunbar JB Jr, Ahmed A, Chinnaswamy K, Delproposto JE, Kubish GM, Tinberg CE, Khare SD, Dou J et al (2015) Csar benchmark exercise 2013: evaluation of results from a combined computational protein design, docking, and scoring/ranking challenge. J Chem Inf Model 56(6):1022–1031PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Carlson HA, Smith RD, Damm-Ganamet KL, Stuckey JA, Ahmed A, Convery MA, Somers DO, Kranz M, Elkins PA, Cui G, Peishoff CE, Lambert MH, Dunbar JB Jr (2016) Csar 2014: a benchmark exercise using unpublished data from pharma. J Chem Inf Model 56(6):1063–1077PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Gathiaka S, Liu S, Chiu M, Yang H, Stuckey JA, Kang YN, Delproposto J, Kubish G, Dunbar JB, Carlson HA et al (2016) D3R grand challenge 2015: evaluation of protein–ligand pose and affinity predictions. J. Comput. Aided Mol. Des. 30(9):651–668PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gaieb Z, Liu S, Gathiaka S, Chiu M, Yang H, Shao C, Feher VA, Walters WP, Kuhn B, Rudolph MG et al (2018) D3R grand challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies. J Comput Aided Mol Des 32(1):1–20PubMedCrossRefGoogle Scholar
  7. 7.
    Gaieb Z, Parks CD, Chiu M, Yang H, Shao C, Walters WP, Lambert MH, Nevins N, Bembenek SD, Ameriks MK et al (2019) D3R grand challenge 3: blind prediction of protein-ligand poses and affinity rankings. J Comput Aided Mol Des 33(1):1–18PubMedCrossRefGoogle Scholar
  8. 8.
    Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, Di Costanzo L, Duarte JM, Dutta S, Feng Z et al (2017) The rcsb protein data bank: integrative view of protein, gene and 3d structural information. Nucleic Acids Res 45(D1):D271–D281PubMedGoogle Scholar
  9. 9.
    Ignatov M, Liu C, Alekseenko A, Sun Z, Padhorny D, Kotelnikov S, Kazennov A, Grebenkin I, Kholodov Y, Kolosvari I et al (2019) Monte carlo on the manifold and md refinement for binding pose prediction of protein-ligand complexes: 2017 D3R grand challenge. J Comput Aided Mol Des 33(1):119–127PubMedCrossRefGoogle Scholar
  10. 10.
    Kumar A, Zhang KY (2019) Shape similarity guided pose prediction: lessons from D3R grand challenge 3. J Comput Aided Mol Des 33(1):47–59PubMedCrossRefGoogle Scholar
  11. 11.
    Koukos PI, Xue LC, Bonvin AM (2019) Protein-ligand pose and affinity prediction: lessons from D3R grand challenge 3. J Comput Aided Mol Des 33(1):83–91PubMedCrossRefGoogle Scholar
  12. 12.
    Nguyen DD, Cang Z, Wu K, Wang M, Cao Y, Wei G-W (2019) Mathematical deep learning for pose and binding affinity prediction and ranking in D3R grand challenges. J Comput Aided Mol Des 33(1):71–82PubMedCrossRefGoogle Scholar
  13. 13.
    Lam PC-H, Abagyan R, Totrov M (2019) Hybrid receptor structure/ligand-based docking and activity prediction in icm: development and evaluation in D3R grand challenge 3. J Comput Aided Mol Des 33(1):35–46PubMedCrossRefGoogle Scholar
  14. 14.
    Chaput L, Selwa E, Elisee E, Iorga BI (2019) Blinded evaluation of cathepsin s inhibitors from the D3RGC3 dataset using molecular docking and free energy calculations. J Comput Aided Mol Des 33(1):93–103PubMedCrossRefGoogle Scholar
  15. 15.
    Sunseri J, King JE, Francoeur PG, Koes DR (2019) Convolutional neural network scoring and minimization in the D3R 2017 community challenge. J Comput Aided Mol Des 33(1):19–34PubMedCrossRefGoogle Scholar
  16. 16.
    He X, Man VH, Ji B, Xie X-Q, Wang J (2019) Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the cathepsin s set in the D3R grand challenge 3. J Comput Aided Mol Des 33(1):105–117PubMedCrossRefGoogle Scholar
  17. 17.
    Xie B, Minh DD (2019) Alchemical grid dock (algdock) calculations in the D3R grand challenge 3. J Comput Aided Mol Des 33(1):61–69PubMedCrossRefGoogle Scholar
  18. 18.
    Vassar R, Kovacs DM, Yan R, Wong PC (2009) The \(\beta\)-secretase enzyme bace in health and alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. J Neurosci 29(41):12787–12794PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Prati F, Bottegoni G, Bolognesi ML, Cavalli A (2017) Bace-1 inhibitors: from recent single-target molecules to multitarget compounds for alzheimer’s disease: Miniperspective. J Med Chem 61(3):619–637PubMedCrossRefGoogle Scholar
  20. 20.
    Hanessian S, Yang G, Rondeau J-M, Neumann U, Betschart C, Tintelnot-Blomley M (2006) Structure-based design and synthesis of macroheterocyclic peptidomimetic inhibitors of the aspartic protease \(\beta\)-site amyloid precursor protein cleaving enzyme (bace). J Med Chem 49(15):4544–4567PubMedCrossRefGoogle Scholar
  21. 21.
    Jordan JB, Whittington DA, Bartberger MD, Sickmier EA, Chen K, Cheng Y, Judd T (2016) Fragment-linking approach using 19f nmr spectroscopy to obtain highly potent and selective inhibitors of \(\beta\)-secretase. J Med Chem 59(8):3732–3749PubMedCrossRefGoogle Scholar
  22. 22.
    Butini S, Brogi S, Novellino E, Campiani G, Ghosh AK, Brindisi M, Gemma S (2013) The structural evolution of \(\beta\)-secretase inhibitors: a focus on the development of small-molecule inhibitors. Curr Top Med Chem 13(15):1787–1807PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461PubMedPubMedCentralGoogle Scholar
  24. 24.
    Kadukova M, Grudinin S (2017) Convex-pl: a novel knowledge-based potential for protein-ligand interactions deduced from structural databases using convex optimization. J Comput Aided Mol Des 31(10):943–958PubMedCrossRefGoogle Scholar
  25. 25.
    Kadukova M, Grudinin S (2016) Knodle: a support vector machines-based automatic perception of organic molecules from 3d coordinates. J Chem Inf Model 56:1410–9PubMedCrossRefGoogle Scholar
  26. 26.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and autodocktools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Liu Z, Su M, Han L, Liu J, Yang Q, Li Y, Wang R (2017) Forging the basis for developing protein-ligand interaction scoring functions. Acc Chem Res 50(2):302–309PubMedCrossRefGoogle Scholar
  28. 28.
    Artemova S, Grudinin S, Redon S (2011) A comparison of neighbor search algorithms for large rigid molecules. J Comput Chem 32(13):2865–2877PubMedCrossRefGoogle Scholar
  29. 29.
    Klenin KV, Tristram F, Strunk T, Wenzel W (2011) Derivatives of molecular surface area and volume: simple and exact analytical formulas. J Comput Chem 32(12):2647–2653PubMedCrossRefGoogle Scholar
  30. 30.
    Klenin K, Tristram F, Strunk T, Wenzel W (2012) Achieving numerical stability in analytical computation of the molecular surface and volume. From Computational Biophysics to Systems Biology (CBSB11)–Celebrating Harold Scheraga’s 90th Birthday 8:75Google Scholar
  31. 31.
    Grudinin S, Popov P, Neveu E, Cheremovskiy G (2015) Predicting binding poses and affinities in the csar 2013–2014 docking exercises using the knowledge-based convex-pl potential. J Chem Inf Model 56(6):1053–1062PubMedCrossRefGoogle Scholar
  32. 32.
    Grudinin S, Kadukova M, Eisenbarth A, Marillet S, Cazals F (2016) Predicting binding poses and affinities for protein-ligand complexes in the 2015 D3R grand challenge using a physical model with a statistical parameter estimation. J Comput Aided Mol Des 30(9):791–804PubMedCrossRefGoogle Scholar
  33. 33.
    Kadukova M, Grudinin S (2018) Docking of small molecules to farnesoid x receptors using autodock vina with the convex-pl potential: lessons learned from D3R grand challenge 2. J Comput Aided Mol Des 32(1):151–162PubMedCrossRefGoogle Scholar
  34. 34.
    G Landrum Rdkit: Open-source cheminformatics http://www.rdkit.org
  35. 35.
    Riniker S, Landrum GA (2015) Better informed distance geometry: using what we know to improve conformation generation. J Chem Inf Model 55(12):2562–2574PubMedCrossRefGoogle Scholar
  36. 36.
    Tosco P, Stiefl N, Landrum G (2014) Bringing the MMFF force field to the rdkit: implementation and validation. J Cheminform 6(1):37PubMedCentralCrossRefGoogle Scholar
  37. 37.
    Schrödinger, LLC (2011) The PyMOL molecular graphics system, version 1.3Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJKGrenobleFrance
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations