Simulation of MDM2 N-terminal domain conformational lability in the presence of imidazoline based inhibitors of MDM2-p53 protein–protein interaction

  • Maxim Gureev
  • Daria Novikova
  • Tatyana Grigoreva
  • Svetlana Vorona
  • Alexander Garabadzhiu
  • Vyacheslav TribulovichEmail author


Targeting of MDM2-p53 protein–protein interaction is a current approach for the development of potent anticancer agents. The classical pharmacophore hypothesis for the design of such molecules describes the three point binding of a small molecule inhibitor to the MDM2 protein. However, this hypothesis is not confirmed when considering the activity of a number of known potent MDM2 inhibitors. Here we demonstrate the important role of the flexible N-terminal region of the MDM2 protein in the binding with small molecule compounds, which contributes to the transition from three point binding to four point binding during the development of new anticancer agents. To evaluate the contribution of the MDM2 N-terminal region to the structure–activity relationship of known MDM2 inhibitors, compounds of nutlin series, whose spatial configuration was shown to dramatically affect the target activity, were used as objects of the study. The key amino acid residues within the N-terminal region involved in the interaction with small molecule ligands were determined by means of molecular dynamics. The conformational stability of the flexible MDM2 fragment was simulated under different conditions. The effects of point mutations on the N-terminal region stability were also demonstrated.


MDM2 Conformational dynamics MDM2 N-terminal domain Molecular dynamics simulation Enantiomeric inhibitors 



This work was financially supported by the Russian Science Foundation (Project No. 16-13-10358).


  1. 1.
    Nowsheen S, Yang ES (2012) The intersection between DNA damage response and cell death pathways. Exp Oncol 34:243–254PubMedPubMedCentralGoogle Scholar
  2. 2.
    Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299CrossRefGoogle Scholar
  3. 3.
    Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27CrossRefGoogle Scholar
  4. 4.
    Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303CrossRefGoogle Scholar
  5. 5.
    Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137:609–622CrossRefGoogle Scholar
  6. 6.
    Shi D, Gu W (2012) Dual roles of MDM2 in the regulation of p53: ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer 3:240–248CrossRefGoogle Scholar
  7. 7.
    Cordon-Cardo C, Latres E, Drobnjak M, Oliva MR, Pollack D, Woodruff JM, Marechal V, Chen J, Brennan MF, Levine AJ (1994) Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res 54:794–799PubMedGoogle Scholar
  8. 8.
    Marchetti A, Buttitta F, Girlando S, Dalla Palma P, Pellegrini S, Fina P, Doglioni C, Bevilacqua G, Barbareschi M (1995) Mdm2 gene alterations and mdm2 protein expression in breast carcinomas. J Pathol 175:31–38CrossRefGoogle Scholar
  9. 9.
    Marchetti A, Buttitta F, Pellegrini S, Merlo G, Chella A, Angeletti CA, Bevilacqua G (1995) Mdm2 gene amplification and overexpression in non-small cell lung carcinomas with accumulation of the p53 protein in the absence of p53 gene mutations. Diagn Mol Pathol 4:93–97CrossRefGoogle Scholar
  10. 10.
    Saha MN, Qiu L, Chang H (2013) Targeting p53 by small molecules in hematological malignancies. J Hematol Oncol 6:23CrossRefGoogle Scholar
  11. 11.
    Krasavin M, Gureyev MA, Dar’in D, Bakulina O, Chizhova M, Lepikhina A, Novikova D, Grigoreva T, Ivanov G, Zhumagalieva A, Garabadzhiu AV, Tribulovich VG (2018) Design, in silico prioritization and biological profiling of apoptosis-inducing lactams amenable by the Castagnoli-Cushman reaction. Bioorg Med Chem 26:2651–2673CrossRefGoogle Scholar
  12. 12.
    Davidovich P, Aksenova V, Petrova V, Tentler D, Orlova D, Smirnov S, Gurzhiy V, Okorokov AL, Garabadzhiu A, Melino G, Barlev N, Tribulovich V (2015) Discovery of novel isatin-based p53 inducers. ACS Med Chem Lett 6:856–860CrossRefGoogle Scholar
  13. 13.
    Grigoreva TA, Novikova DS, Gureev MA, Garabadzhiu AV, Tribulovich VG (2018) Amino acids as chiral derivatizing agents for antiproliferative substituted N-benzyl isoindolinones. Chirality 30:785–797CrossRefGoogle Scholar
  14. 14.
    Ribeiro CJ, Rodrigues CM, Moreira R, Santos MM (2016) Chemical variations on the p53 reactivation theme. Pharmaceuticals (Basel) 9:E25CrossRefGoogle Scholar
  15. 15.
    Michelsen K, Jordan JB, Lewis J, Long AM, Yang E, Rew Y, Zhou J, Yakowec P, Schnier PD, Huang X, Poppe L (2012) Ordering of the N-terminus of human MDM2 by small molecule inhibitors. J Am Chem Soc 134:17059–17067CrossRefGoogle Scholar
  16. 16.
    Grigoreva TA, Garabadzhiu AV, Tribulovich VG (2016) Diastereotopic derivatives of chiral alkoxyisoindolinones. Russ J Gen Chem 86:2454–2461CrossRefGoogle Scholar
  17. 17.
    Grigoreva TA, Novikova DS, Petukhov AV, Gureev MA, Garabadzhiu AV, Melino G, Barlev NA, Tribulovich VG (2017) Proapoptotic modification of substituted isoindolinones as MDM2-p53 inhibitors. Bioorg Med Chem Lett 27:5197–5202CrossRefGoogle Scholar
  18. 18.
    Parks DJ, LaFrance LV, Calvo RR, Milkiewicz KL, Marugán JJ, Raboisson P, Schubert C, Koblish HK, Zhao S, Franks CF, Lattanze J, Carver TE, Cummings MD, Maguire D, Grasberger BL, Maroney AC, Lu T (2006) Enhanced pharmacokinetic properties of 1,4-benzodiazepine-2,5-dione antagonists of the HDM2-p53 protein-protein interaction through structure-based drug design. Bioorg Med Chem Lett 16:3310–3314CrossRefGoogle Scholar
  19. 19.
    Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848CrossRefGoogle Scholar
  20. 20.
    Anil B, Riedinger C, Endicott JA, Noble ME (2013) The structure of an MDM2-Nutlin-3a complex solved by the use of a validated MDM2 surface-entropy reduction mutant. Acta Crystallogr D Biol Crystallogr 69:1358–1366CrossRefGoogle Scholar
  21. 21.
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748CrossRefGoogle Scholar
  22. 22.
    Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55:351–367CrossRefGoogle Scholar
  23. 23.
    Jacobson MP, Friesner RA, Xiang Z, Honig B (2002) On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol 320:597–608CrossRefGoogle Scholar
  24. 24.
    Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12:281–296CrossRefGoogle Scholar
  25. 25.
    Toukan K, Rahman A (1985) Molecular-dynamics study of atomic motions in water. Phys Rev B 31:2643–2648CrossRefGoogle Scholar
  26. 26.
    Bueren-Calabuig JA, Michel J (2016) Impact of Ser17 phosphorylation on the conformational dynamics of the oncoprotein MDM2. Biochemistry 55:2500–2509CrossRefGoogle Scholar
  27. 27.
    Zheng J, Lang Y, Zhang Q, Cui D, Sun H, Jiang L, Chen Z, Zhang R, Gao Y, Tian W, Wu W, Tang J, Chen Z (2015) Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation. Genes Dev 29:1524–1534CrossRefGoogle Scholar
  28. 28.
    Uhrinova S, Uhrin D, Powers H, Watt K, Zheleva D, Fischer P, McInnes C, Barlow PN (2005) Structure of free MDM2 N-terminal domain reveals conformational adjustments that accompany p53-binding. J Mol Biol 350:587–598CrossRefGoogle Scholar
  29. 29.
    Shin JS, Ha JH, Lee DH, Ryu KS, Bae KH, Park BC, Park SG, Yi GS, Chi SW (2015) Structural convergence of unstructured p53 family transactivation domains in MDM2 recognition. Cell Cycle 14:533–543CrossRefGoogle Scholar
  30. 30.
    Worrall EG, Wawrzynow B, Worrall L, Walkinshaw M, Ball KL, Hupp TR (2009) Regulation of the E3 ubiquitin ligase activity of MDM2 by an N-terminal pseudo-substrate motif. J Chem Biol 2:113–129CrossRefGoogle Scholar
  31. 31.
    Dastidar SG, Raghunathan D, Nicholson J, Hupp TR, Lane DP, Verma CS (2011) Chemical states of the N-terminal “lid” of MDM2 regulate p53 binding: simulations reveal complexities of modulation. Cell Cycle 10:82–89CrossRefGoogle Scholar
  32. 32.
    Verkhivker GM (2012) Simulating molecular mechanisms of the MDM2-mediated regulatory interactions: a conformational selection model of the MDM2 lid dynamics. PLoS ONE 7:e40897CrossRefGoogle Scholar
  33. 33.
    Zhan C, Varney K, Yuan W, Zhao L, Lu W (2012) Interrogation of MDM2 phosphorylation in p53 activation using native chemical ligation: the functional role of Ser17 phosphorylation in MDM2 reexamined. J Am Chem Soc 134:6855–6864CrossRefGoogle Scholar
  34. 34.
    Showalter SA, Bruschweiler-Li L, Johnson E, Zhang F, Brüschweiler R (2008) Quantitative lid dynamics of MDM2 reveals differential ligand binding modes of the p53-binding cleft. J Am Chem Soc 130:6472–6478CrossRefGoogle Scholar
  35. 35.
    Thompson T, Andreeff M, Studzinski GP, Vassilev LT (2010) 1,25-dihydroxyvitamin D3 enhances the apoptotic activity of MDM2 antagonist nutlin-3a in acute myeloid leukemia cells expressing wild-type p53. Mol Cancer Ther 9:1158–1168CrossRefGoogle Scholar
  36. 36.
    Fry DC, Wartchow C, Graves B, Janson C, Lukacs C, Kammlott U, Belunis C, Palme S, Klein C, Vu B (2013) Deconstruction of a nutlin: dissecting the binding determinants of a potent protein-protein interaction inhibitor. ACS Med Chem Lett 4:660–665CrossRefGoogle Scholar
  37. 37.
    Fedorova O, Daks A, Petrova V, Petukhov A, Lezina L, Shuvalov O, Davidovich P, Kriger D, Lomert E, Tentler D, Kartsev V, Uyanik B, Tribulovich V, Demidov O, Melino G, Barlev NA (2018) Novel isatin-derived molecules activate p53 via interference with Mdm2 to promote apoptosis. Cell Cycle 17:1917–1930CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Molecular PharmacologySaint Petersburg State Institute of TechnologySaint PetersburgRussia

Personalised recommendations