Coupling enhanced sampling of the apo-receptor with template-based ligand conformers selection: performance in pose prediction in the D3R Grand Challenge 4

  • Andrea Basciu
  • Panagiotis I. Koukos
  • Giuliano Malloci
  • Alexandre M. J. J. BonvinEmail author
  • Attilio V. VargiuEmail author


We report the performance of our newly introduced Ensemble Docking with Enhanced sampling of pocket Shape (EDES) protocol coupled to a template-based algorithm to generate near-native ligand conformations in the 2019 iteration of the Grand Challenge (GC4) organized by the D3R consortium. Using either AutoDock4.2 or HADDOCK2.2 docking programs (each software in two variants of the protocol) our method generated native-like poses among the top 5 submitted for evaluation for most of the 20 targets with similar performances. The protein selected for GC4 was the human beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1), a transmembrane aspartic-acid protease. We identified at least one pose whose heavy-atoms RMSD was less than 2.5 Å from the native conformation for 16 (80%) and 17 (85%) of the 20 targets using AutoDock and HADDOCK, respectively. Dissecting the possible sources of errors revealed that: (i) our EDES protocol (with minor modifications) was able to sample sub-ångstrom conformations for all 20 protein targets, reproducing the correct conformation of the binding site within ~ 1 Å RMSD; (ii) as already shown by some of us in GC3, even in the presence of near-native protein structures, a proper selection of ligand conformers is crucial for the success of ensemble-docking calculations. Importantly, our approach performed best among the protocols exploiting only structural information of the apo protein to generate conformations of the receptor for ensemble-docking calculations.


Molecular docking Metadynamics EDES HADDOCK AutoDock BACE-1 



A.B. gratefully acknowledges the Sardinia Regional Government for the financial support of his Ph.D. scholarship (P.O.R. Sardegna F.SE., Operational Programme of the Autonomous Region of Sardinia, European Social Fund 2014–2020—Axis III Education and Training, Thematic Goal 10, Priority of Investment 10ii, Specific Goal 10.5., Action Partnership Agreement 10.5.12). This work was done as part of the BioExcel CoE (, a project funded by the European Union Horizon 2020 Program under Grant Agreements 675728 and 823830 (to A. M. J. J. B.) with financial support from the Dutch Foundation for Scientific Research (NWO) (TOP-PUNT Grant 718.015.001.

Supplementary material

10822_2019_244_MOESM1_ESM.docx (1.4 mb)
Electronic supplementary material 1 (DOCX 1393 kb)


  1. 1.
    Gaieb Z, Parks CD, Chiu M et al (2019) D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity rankings. J Comput Aided Mol Des 33:1–18. CrossRefPubMedGoogle Scholar
  2. 2.
    Gaieb Z, Liu S, Gathiaka S et al (2018) D3R Grand Challenge 2: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies. J Comput Aided Mol Des 32:1–20. CrossRefPubMedGoogle Scholar
  3. 3.
    Gathiaka S, Liu S, Chiu M et al (2016) D3R grand challenge 2015: evaluation of protein–ligand pose and affinity predictions. J Comput Aided Mol Des 30:651–668. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Venugopal C, Demos C, Jagannatha Rao K et al (2008) Beta-secretase: structure, function, and evolution. CNS Neurol Disord 7:278–294. CrossRefGoogle Scholar
  5. 5.
    Cole SL, Vassar R (2007) The Alzheimer’s disease beta-secretase enzyme, BACE1. Mol Neurodegener 2:22. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nalivaeva NN, Turner AJ (2013) The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett 587:2046–2054. CrossRefPubMedGoogle Scholar
  7. 7.
    Murphy MP, LeVine H (2010) Alzheimer’s disease and the amyloid-β peptide. J Alzheimers Dis 19:311–323. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Prati F, Bottegoni G, Bolognesi ML, Cavalli A (2018) BACE-1 inhibitors: from recent single-target molecules to multitarget compounds for Alzheimer’s disease: miniperspective. J Med Chem 61:619–637. CrossRefPubMedGoogle Scholar
  10. 10.
    Moussa CE-H (2017) Beta-secretase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease. Expert Opin Investig Drugs 26:1131–1136. CrossRefPubMedGoogle Scholar
  11. 11.
    Amaro RE, Baudry J, Chodera J et al (2018) Ensemble docking in drug discovery. Biophys J 114:2271–2278. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Huang S-Y, Zou X (2007) Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins Struct Funct Bioinform 66:399–421. CrossRefGoogle Scholar
  13. 13.
    Basciu A, Malloci G, Pietrucci F et al (2019) Holo-like and druggable protein conformations from enhanced sampling of binding pocket volume and shape. J Chem Inf Model 59:1515–1528. CrossRefPubMedGoogle Scholar
  14. 14.
    Zhao H, Caflisch A (2015) Molecular dynamics in drug design. Eur J Med Chem 91:4–14. CrossRefPubMedGoogle Scholar
  15. 15.
    De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061. CrossRefPubMedGoogle Scholar
  16. 16.
    Koukos PI, Xue LC, Bonvin AMJJ (2019) Protein–ligand pose and affinity prediction: lessons from D3R Grand Challenge 3. J Comput Aided Mol Des 33:83–91. CrossRefPubMedGoogle Scholar
  17. 17.
    Hong L, Tang J (2004) Flap position of free memapsin 2 (β-secretase), a model for flap opening in aspartic protease catalysis. Biochemistry 43:4689–4695. CrossRefPubMedGoogle Scholar
  18. 18.
    Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12562–12566. CrossRefPubMedGoogle Scholar
  19. 19.
    Hawkins PCD, Skillman AG, Warren GL et al (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and cambridge structural database. J Chem Inf Model 50:572–584. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791.CrossRefGoogle Scholar
  21. 21.
    Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein−protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737. CrossRefPubMedGoogle Scholar
  22. 22.
    van Zundert GCP, Rodrigues JPGLM, Trellet M et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. Comput Resour Mol Biol 428:720–725. CrossRefGoogle Scholar
  23. 23.
    Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82. CrossRefPubMedGoogle Scholar
  24. 24.
    Wang Y, Backman TWH, Horan K, Girke T (2013) fmcsR: mismatch tolerant maximum common substructure searching in R. Bioinformatics 29:2792–2794. CrossRefPubMedGoogle Scholar
  25. 25.
    Cao Y, Charisi A, Cheng L-C et al (2008) ChemmineR: a compound mining framework for R. Bioinformatics 24:1733–1734. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kurkcuoglu Z, Koukos PI, Citro N et al (2018) Performance of HADDOCK and a simple contact-based protein–ligand binding affinity predictor in the D3R Grand Challenge 2. J Comput Aided Mol Des 32:175–185. CrossRefPubMedGoogle Scholar
  27. 27.
    Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. CrossRefPubMedGoogle Scholar
  28. 28.
    Williams CJ, Headd JJ, Moriarty NW et al (2018) MolProbity: more and better reference data for improved all-atom structure validation: PROTEIN SCIENCE.ORG. Protein Sci 27:293–315. CrossRefPubMedGoogle Scholar
  29. 29.
    Case DA, Ben-Shalom IY, Brozell SR et al (2018) AMBER18. University of California, San FranciscoGoogle Scholar
  30. 30.
    Wang L-P, Martinez TJ, Pande VS (2014) Building force fields: an automatic, systematic, and reproducible approach. J Phys Chem Lett 5:1885–1891. CrossRefPubMedGoogle Scholar
  31. 31.
    Wang L-P, McKiernan KA, Gomes J et al (2017) Building a more predictive protein force field: a systematic and reproducible route to AMBER-FB15. J Phys Chem B 121:4023–4039. CrossRefPubMedGoogle Scholar
  32. 32.
    Joung IS, Cheatham TE (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112:9020–9041. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hopkins CW, Le Grand S, Walker RC, Roitberg AE (2015) Long-time-step molecular dynamics through hydrogen mass repartitioning. J Chem Theory Comput 11:1864–1874. CrossRefPubMedGoogle Scholar
  34. 34.
    Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:020603. CrossRefPubMedGoogle Scholar
  35. 35.
    Piana S, Laio A (2007) A bias-exchange approach to protein folding. J Phys Chem B 111:4553–4559. CrossRefPubMedGoogle Scholar
  36. 36.
    Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. CrossRefGoogle Scholar
  37. 37.
    Tribello GA, Bonomi M, Branduardi D et al (2014) PLUMED 2: new feathers for an old bird. Comput Phys Commun 185:604–613. CrossRefGoogle Scholar
  38. 38.
    Sousa da Silva AW, Vranken WF (2012) ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hayward S (2004) Identification of specific interactions that drive ligand-induced closure in five enzymes with classic domain movements. J Mol Biol 339:1001–1021. CrossRefPubMedGoogle Scholar
  40. 40.
    Gerstein M (1998) A database of macromolecular motions. Nucleic Acids Res 26:4280–4290. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    van Aalten DMF, Bywater R, Findlay JBC et al (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des 10:255–262. CrossRefPubMedGoogle Scholar
  42. 42.
    Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  43. 43.
    Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinform 10:168. CrossRefGoogle Scholar
  44. 44.
    Schmidtke P, Barril X (2010) Understanding and predicting druggability. A High-throughput method for detection of drug binding sites. J Med Chem 53:5858–5867. CrossRefPubMedGoogle Scholar
  45. 45.
    Antunes DA, Devaurs D, Kavraki LE (2015) Understanding the challenges of protein flexibility in drug design. Expert Opin Drug Discov 10:1301–1313. CrossRefPubMedGoogle Scholar
  46. 46.
    Du X, Li Y, Xia Y-L et al (2016) Insights into protein–ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17:144. CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Buonfiglio R, Recanatini M, Masetti M (2015) Protein flexibility in drug discovery: from theory to computation. ChemMedChem 10:1141–1148. CrossRefPubMedGoogle Scholar
  48. 48.
    Chen I-J, Foloppe N (2013) Tackling the conformational sampling of larger flexible compounds and macrocycles in pharmacology and drug discovery. Bioorg Med Chem 21:7898–7920. CrossRefPubMedGoogle Scholar
  49. 49.
    Cleves AE, Jain AN (2017) ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs. J Comput Aided Mol Des 31:419–439. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jain AN, Cleves AE, Gao Q et al (2019) Complex macrocycle exploration: parallel, heuristic, and constraint-based conformer generation using ForceGen. J Comput Aided Mol Des 33:531–558. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tarcsay Á, Paragi G, Vass M et al (2013) The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs. J Chem Inf Model 53:2990–2999. CrossRefPubMedGoogle Scholar
  52. 52.
    Li YY, An J, Jones SJ (2011) A computational approach to finding novel targets for existing drugs. PLoS Comput Biol 7:e1002139CrossRefGoogle Scholar
  53. 53.
    Amaro RE, Li WW (2010) Emerging methods for ensemble-based virtual screening. Curr Top Med Chem 10:3–13CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento Di FisicaUniversità Di Cagliari, Cittadella UniversitariaMonserratoItaly
  2. 2.Bijvoet Center for Biomolecular Research, Faculty of Science - ChemistryUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations