Advertisement

Journal of Computer-Aided Molecular Design

, Volume 33, Issue 4, pp 437–446 | Cite as

Assessing the performance of three resveratrol in binding with SIRT1 by molecular dynamics simulation and MM/GBSA methods: the weakest binding of resveratrol 3 to SIRT1 triggers a possibility of dissociation from its binding site

  • Han Chen
  • Yan Wang
  • Zheng Gao
  • Wen Yang
  • Jian GaoEmail author
Article
  • 241 Downloads

Abstract

SIRT1 is an NAD+-dependent deacetylase, whose activators have potential therapeutic applications in the age-related, metabolic, neurode-generative and cardiovascular diseases. Resveratrol (RSV) has been regarded as potent SIRT1 activator in the treatment of atherosclerosis and cardiovascular diseases. Moreover, the previous crystal structure of SIRT1 complex with RSV indicated that three RSV participated in the SIRT1 activation, namely RSV1 and RSV2 strengthened the interaction of SIRT1 to its substrate peptide and promoted the stimulation of SIRT1 activity, while RSV3 exhibited an auxiliary function. Whereas the molecular mechanism of the insignificant role of RSV3 has not been reported. Moreover, the dynamics properties of three RSV in the binding site of SIRT1 are still unknown. In this study, to evaluate the role of RSV3 systematically, five SIRT1_RSV system (SIRT1_RSV1-3, SIRT1_RSV1-2, SIRT1_RSV1, 3, SIRT1_RSV2-3 and SIRT13) were constructed and subjected to 20 ns molecular dynamics simulation. Our simulations showed that the binding of RSV1 was extremely stable in any system and might be independent to the existence of RSV2 and RSV3. The stability of RSV2 was slightly weaker than that of RSV1. More interestingly, RSV3 could completely dissociate from its binding site in SIRT1_RSV1-3 system at 7 ns, which might be an important factor for its auxiliary role in activating SIRT1. Actually, some preliminary signs of RSV3 dissociation already appeared around 1 ns. In detail, the innate weakness between RSV3 and Lys444 would trigger frequent formation and breakage of the RSV3-Lys444 hydrogen bond. Residue Asp298 preferred to form hydrogen bond with RSV2 rather than RSV3 once the RSV3-Lys444 hydrogen bond became stronger. Without the RSV3–Asp298 interaction, the remaining RSV3–Lys444 and RSV3–Asp292 hydrogen bonds hardly preserved the RSV3’s binding, which resulted in the dissociation of RSV3. Our work elucidated the inequable contributions of three RSV on their binding interaction with SIRT1 and indicated that the binding sites of RSV1 and RSV2 should be enough to design more potent SIRT1 activator.

Keywords

SIRT1 Resveratrol Molecular dynamics simulation 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Number 21708033) and Science and Technology project of Xuzhou (Grant Number KC16SG249).

Compliance with ethical standards

Conflict of interest

All authors do not have any conflicts of interest.

Supplementary material

10822_2019_193_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1080 KB)

References

  1. 1.
    Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R (2000) The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 97(11):5807–5811.  https://doi.org/10.1073/pnas.110148297 CrossRefGoogle Scholar
  2. 2.
    North BJ, Verdin E (2004) Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 5(5):224.  https://doi.org/10.1186/gb-2004-5-5-224 CrossRefGoogle Scholar
  3. 3.
    Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273(2):793–798.  https://doi.org/10.1006/bbrc.2000.3000 CrossRefGoogle Scholar
  4. 4.
    Cao Y, Jiang X, Ma H, Wang Y, Xue P, Liu Y (2016) SIRT1 and insulin resistance. J Diabetes Complicat 30(1):178–183.  https://doi.org/10.1016/j.jdiacomp.2015.08.022 CrossRefGoogle Scholar
  5. 5.
    Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6(4):298–305.  https://doi.org/10.1038/nrm1616 CrossRefGoogle Scholar
  6. 6.
    Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435.  https://doi.org/10.1146/annurev.biochem.73.011303.073651 CrossRefGoogle Scholar
  7. 7.
    Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, Easlon EJ, Lin SJ, Guarente L (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 4(2):e31.  https://doi.org/10.1371/journal.pbio.0040031 CrossRefGoogle Scholar
  8. 8.
    Ramsey KM, Mills KF, Satoh A, Imai S (2008) Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 7(1):78–88.  https://doi.org/10.1111/j.1474-9726.2007.00355.x CrossRefGoogle Scholar
  9. 9.
    Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305(5682):390–392.  https://doi.org/10.1126/science.1099196 CrossRefGoogle Scholar
  10. 10.
    Haigis MC, Guarente LP (2006) Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev 20(21):2913–2921.  https://doi.org/10.1101/gad.1467506 CrossRefGoogle Scholar
  11. 11.
    Bauer JH, Goupil S, Garber GB, Helfand SL (2004) An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proc Natl Acad Sci USA 101(35):12980–12985.  https://doi.org/10.1073/pnas.0403493101 CrossRefGoogle Scholar
  12. 12.
    Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16(3):296–300.  https://doi.org/10.1016/j.cub.2005.12.038 CrossRefGoogle Scholar
  13. 13.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122.  https://doi.org/10.1016/j.cell.2006.11.013 CrossRefGoogle Scholar
  14. 14.
    Villalba JM, Alcain FJ (2012) Sirtuin activators and inhibitors. BioFactors 38(5):349–359.  https://doi.org/10.1002/biof.1032 CrossRefGoogle Scholar
  15. 15.
    Cao D, Wang M, Qiu X, Liu D, Jiang H, Yang N, Xu RM (2015) Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev 29(12):1316–1325.  https://doi.org/10.1101/gad.265462.115 CrossRefGoogle Scholar
  16. 16.
    SYBYL_X2.1 is availabe from Tripos Associates Inc. SHR, St. Louis, MO 631444, USAGoogle Scholar
  17. 17.
    Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688.  https://doi.org/10.1002/jcc.20290 CrossRefGoogle Scholar
  18. 18.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012.  https://doi.org/10.1002/jcc.10349 CrossRefGoogle Scholar
  19. 19.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174.  https://doi.org/10.1002/jcc.20035 CrossRefGoogle Scholar
  20. 20.
    Gaussian 09 RA, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., WallingfordGoogle Scholar
  21. 21.
    Gao J, Cheng Y, Cui W, Zhang F, Zhang H, Du Y, Ji M (2013) Prediction of the binding modes between macrolactin N and peptide deformylase from Staphylococcus aureus by molecular docking and molecular dynamics simulations. Med Chem Res 22(6):2889–2901.  https://doi.org/10.1007/s00044-012-0303-8 CrossRefGoogle Scholar
  22. 22.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092.  https://doi.org/10.1063/1.464397 CrossRefGoogle Scholar
  23. 23.
    Cournia Z, Allen B, Sherman W (2017) Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J Chem Inf Model 57(12):2911–2937.  https://doi.org/10.1021/acs.jcim.7b00564 CrossRefGoogle Scholar
  24. 24.
    Gao J, Liang L, Chen Q, Zhang L, Huang T (2018) Insight into the molecular mechanism of yeast acetyl-coenzyme A carboxylase mutants F510I, N485G, I69E, E477R, and K73R resistant to soraphen A. J Comput Aided Mol Des 32(4):547–557.  https://doi.org/10.1007/s10822-018-0108-z CrossRefGoogle Scholar
  25. 25.
    Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T (2016) Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking. Phys Chem Chem Phys 18(32):22129–22139.  https://doi.org/10.1039/C6CP03670H CrossRefGoogle Scholar
  26. 26.
    Sun H, Li Y, Tian S, Xu L, Hou T (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys 16(31):16719–16729.  https://doi.org/10.1039/C4CP01388C CrossRefGoogle Scholar
  27. 27.
    Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55(2):383–394.  https://doi.org/10.1002/prot.20033 CrossRefGoogle Scholar
  28. 28.
    Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20(2):217–230CrossRefGoogle Scholar
  29. 29.
    Hou X, Rooklin D, Fang H, Zhang Y (2016) Resveratrol serves as a protein–substrate interaction stabilizer in human SIRT1 activation. Sci Rep 6:38186.  https://doi.org/10.1038/srep38186 CrossRefGoogle Scholar
  30. 30.
    Pavelites JJ, Gao J, Bash PA, Jr MK (1997) A molecular mechanics force field for NAD+, NADH and the pyrophosphate groups of nucleotides. J Comput Chem 18(2):221–239.  https://doi.org/10.1002/(SICI)1096-987X(19970130)18:2%3C221::AID-JCC7%3E3.0.CO;2-X CrossRefGoogle Scholar
  31. 31.
    Walker RC, de Souza MM, Mercer IP, Gould IR, Klug DR (2002) Large and fast relaxations inside a protein: calculation and measurement of reorganization energies in alcohol dehydrogenase. J Phys Chem B 106(44):11658–11665.  https://doi.org/10.1021/jp0261814 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouPeople’s Republic of China

Personalised recommendations