Advertisement

Journal of Computer-Aided Molecular Design

, Volume 33, Issue 2, pp 265–285 | Cite as

Structural characterization and molecular dynamics simulations of the caprine and bovine solute carrier family 11 A1 (SLC11A1)

  • Kostas A. TriantaphyllopoulosEmail author
  • Fotis A. Baltoumas
  • Stavros J. Hamodrakas
Article
  • 223 Downloads

Abstract

Natural Resistance-Associated Macrophage Proteins are a family of transmembrane divalent metal ion transporters, with important implications in life of both bacteria and mammals. Among them, the Solute Carrier family 11 member A1 (SLC11A1) has been implicated with susceptibility to infection by Mycobacterium avium subspecies paratuberculosis (MAP), potentially causing Crohn’s disease in humans and paratuberculosis (PTB) in ruminants. Our previous research had focused on sequencing the mRNA of the caprine slc11a1 gene and pinpointed polymorphisms that contribute to caprine SLC11A1’s susceptibility to infection by MAP in PTB. Despite its importance, little is known on the structural/dynamic features of mammalian SLC11A1 that may influence its function under normal or pathological conditions at the protein level. In this work we studied the structural architecture of SLC11A1 in Capra hircus and Bos taurus through molecular modeling, molecular dynamics simulations in different, functionally relevant configurations, free energy calculations of protein-metal interactions and sequence conservation analysis. The results of this study propose a three dimensional structure for SLC11A1 with conserved sequence and structural features and provide hints for a potential mechanism through which divalent metal ion transport is conducted. Given the importance of SLC11A1 in susceptibility to PTB, this study provides a framework for further studies on the structure and dynamics of SLC11A1 in other organisms, to gain 3D structural insight into the macromolecular arrangements of SLC11A1 but also suggesting a potential mechanism which divalent metal ion transport is conducted.

Keywords

SLC11A1 NRAMP Paratuberculosis Ion transport Molecular dynamics Energy calculations 

Abbreviations

Slc11a1

Solute carrier family 11 member 1 gene

SLC11A1

Solute carrier family 11 member A1

NRAMPs

Natural resistance-associated macrophage proteins

DMT1

Divalent metal ion transporer 1

MAP

Mycobacterium avium subspecies paratuberculosis

ScaDMT

Staphylococcus capitis divalent metal ion transporter

EcoDMT

Eremococcus coleocola divalent metal ion transporter

DraNramp

Deinococcus radiodurans NRAMP homolog

TM

Transmembrane

MD

Molecular dynamics

FEP

Free energy perturbation

EDA

Essential dynamics analysis

Notes

Acknowledgements

We thank the authors from both the Agricultural University of Athens and the National and Kapodistrian University of Athens for the conception, enthusiasm and continuous support of the work. We would also like to thank the anonymous reviewers for their comments and the associate editor for their proper handling of the manuscript. This work was supported by computational time granted from the Greek Research & Technology Network (GRNET) in the National HPC facility—ARIS under project IDs “PR002041-S.C.S.M.P.” and “PR004006-BioMemPro-MD”.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10822_2018_179_MOESM1_ESM.pdf (8.7 mb)
Supplementary material 1 (PDF 8960 KB)

References

  1. 1.
    Dekkers JC, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3(1):22–32.  https://doi.org/10.1038/nrg701 Google Scholar
  2. 2.
    Sechi LA, Dow CT (2015) Mycobacterium avium ss. paratuberculosis zoonosis—the hundred year war - Beyond Crohn’s Disease. Front Immunol 6:96.  https://doi.org/10.3389/fimmu.2015.00096 Google Scholar
  3. 3.
    Shariat N, Dudley EG (2008) CRISPRs: molecular signatures used for pathogen subtyping. Appl Environ Microbiol 80(2):430–439.  https://doi.org/10.1128/AEM.02790-13 Google Scholar
  4. 4.
    Walzl G, Ronacher K, Hanekom W, Scriba TJ, Zumla A (2011) Immunological biomarkers of tuberculosis. Nat Rev Immunol 11(5):343–354.  https://doi.org/10.1038/nri2960 Google Scholar
  5. 5.
    Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV (1998) Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 338(10):640–644.  https://doi.org/10.1056/NEJM199803053381002 Google Scholar
  6. 6.
    Paccagnini D, Sieswerda L, Rosu V, Masala S, Pacifico A, Gazouli M, Ikonomopoulos J, Ahmed N, Zanetti S, Sechi LA (2009) Linking chronic infection and autoimmune diseases: Mycobacterium avium subspecies paratuberculosis, SLC11A1 polymorphisms and type-1 diabetes mellitus. PLoS ONE 4(9):e7109.  https://doi.org/10.1371/journal.pone.0007109 Google Scholar
  7. 7.
    Ruiz-Larrañaga O (2009) Identification of single nucleotide polymorphisms in the bovine solute carrier family 11 member 1 (SLC11A1) gene and their association with infection by Mycobacterium avium subspecies paratuberculosis. J Dairy Sci 93:1713–1721Google Scholar
  8. 8.
    Sophie M, Hameed A, Muneer A, Samdani AJ, Saleem S, Azhar A (2017) SLC11A1 polymorphisms and host susceptibility to cutaneous leishmaniasis in Pakistan. Parasit Vectors 10(1):12.  https://doi.org/10.1186/s13071-016-1934-2 Google Scholar
  9. 9.
    Stewart LC, Day AS, Pearson J, Barclay ML, Gearry RB, Roberts RL, Bentley RW (2010) SLC11A1 polymorphisms in inflammatory bowel disease and Mycobacterium avium subspecies paratuberculosis status. World J Gastroenterol 16(45):5727–5731Google Scholar
  10. 10.
    Korou LM, Liandris E, Gazouli M, Ikonomopoulos J (2010) Investigation of the association of the SLC11A1 gene with resistance/sensitivity of goats (Capra hircus) to paratuberculosis. Vet Microbiol 144(3–4):353–358.  https://doi.org/10.1016/j.vetmic.2010.01.009 Google Scholar
  11. 11.
    Taka S, Gazouli M, Sotirakoglou K, Liandris E, Andreadou M, Triantaphyllopoulos K, Ikonomopoulos J (2015) Functional analysis of 3′UTR polymorphisms in the caprine SLC11A1 gene and its association with the Mycobacterium avium subsp. paratuberculosis infection. Vet Immunol Immunopathol 167(1–2):75–79.  https://doi.org/10.1016/j.vetimm.2015.06.004 Google Scholar
  12. 12.
    Taka S, Liandris E, Gazouli M, Sotirakoglou K, Theodoropoulos G, Bountouri M, Andreadou M, Ikonomopoulos J (2013) In vitro expression of the SLC11A1 gene in goat monocyte-derived macrophages challenged with Mycobacterium avium subsp paratuberculosis. Infect Genet Evol 17:8–15.  https://doi.org/10.1016/j.meegid.2013.03.033 Google Scholar
  13. 13.
    Vacca GM, Pazzola M, Pisano C, Carcangiu V, Diaz ML, Nieddu M, Robledo R, Mezzanotte R, Dettori ML (2011) Chromosomal localisation and genetic variation of the SLC11A1 gene in goats (Capra hircus). Vet J 190(1):60–65.  https://doi.org/10.1016/j.tvjl.2010.09.028 Google Scholar
  14. 14.
    Forbes JR, Gros P (2003) Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102(5):1884–1892.  https://doi.org/10.1182/blood-2003-02-0425 Google Scholar
  15. 15.
    Cellier M, Govoni G, Vidal S, Kwan T, Groulx N, Liu J, Sanchez F, Skamene E, Schurr E, Gros P (1994) Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression. J Exp Med 180(5):1741–1752Google Scholar
  16. 16.
    Forbes JR, Gros P (2001) Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol 9(8):397–403Google Scholar
  17. 17.
    Vidal SM, Pinner E, Lepage P, Gauthier S, Gros P (1996) Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1 D169) mouse strains. J Immunol 157(8):3559–3568Google Scholar
  18. 18.
    Cellier MF (2012) Nramp: from sequence to structure and mechanism of divalent metal import. Curr Top Membr 69:249–293.  https://doi.org/10.1016/B978-0-12-394390-3.00010-0 Google Scholar
  19. 19.
    Techau ME, Valdez-Taubas J, Popoff JF, Francis R, Seaman M, Blackwell JM (2007) Evolution of differences in transport function in Slc11a family members. J Biol Chem 282(49):35646–35656.  https://doi.org/10.1074/jbc.M707057200 Google Scholar
  20. 20.
    Howitt J, Putz U, Lackovic J, Doan A, Dorstyn L, Cheng H, Yang B, Chan-Ling T, Silke J, Kumar S, Tan SS (2009) Divalent metal transporter 1 (DMT1) regulation by Ndfip1 prevents metal toxicity in human neurons. Proc Natl Acad Sci USA 106(36):15489–15494.  https://doi.org/10.1073/pnas.0904880106 Google Scholar
  21. 21.
    Soe-Lin S, Apte SS, Mikhael MR, Kayembe LK, Nie G, Ponka P (2010) Both Nramp1 and DMT1 are necessary for efficient macrophage iron recycling. Exp Hematol 38(8):609–617.  https://doi.org/10.1016/j.exphem.2010.04.003 Google Scholar
  22. 22.
    Roupie V, Rosseels V, Piersoel V, Zinniel DK, Barletta RG, Huygen K (2008) Genetic resistance of mice to Mycobacterium paratuberculosis is influenced by Slc11a1 at the early but not at the late stage of infection. Infection immunity 76(5):2099–2105.  https://doi.org/10.1128/IAI.01137-07 Google Scholar
  23. 23.
    Stienstra Y, van der Werf TS, Oosterom E, Nolte IM, van der Graaf WT, Etuaful S, Raghunathan PL, Whitney EA, Ampadu EO, Asamoa K, Klutse EY, te Meerman GJ, Tappero JW, Ashford DA, van der Steege G (2006) Susceptibility to Buruli ulcer is associated with the SLC11A1 (NRAMP1) D543N polymorphism. Genes Immun 7(3):185–189.  https://doi.org/10.1038/sj.gene.6364281 Google Scholar
  24. 24.
    White JK, Stewart A, Popoff JF, Wilson S, Blackwell JM (2004) Incomplete glycosylation and defective intracellular targeting of mutant solute carrier family 11 member 1 (Slc11a1). Biochem J 382(Pt 3):811–819.  https://doi.org/10.1042/BJ20040808 Google Scholar
  25. 25.
    Wessling-Resnick M (2015) Nramp1 and other transporters involved in metal withholding during infection. J Biol Chem 290(31):18984–18990.  https://doi.org/10.1074/jbc.R115.643973 Google Scholar
  26. 26.
    Bozzi AT, Bane LB, Weihofen WA, Singharoy A, Guillen ER, Ploegh HL, Schulten K, Gaudet R (2016) Crystal structure and conformational change mechanism of a bacterial Nramp-family divalent metal transporter. Structure 24(12):2102–2114.  https://doi.org/10.1016/j.str.2016.09.017 Google Scholar
  27. 27.
    Ehrnstorfer IA, Geertsma ER, Pardon E, Steyaert J, Dutzler R (2014) Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nat Struct Mol Biol 21(11):990–996.  https://doi.org/10.1038/nsmb.2904 Google Scholar
  28. 28.
    Ehrnstorfer IA, Manatschal C, Arnold FM, Laederach J, Dutzler R (2017) Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family. Nat Commun 8:14033.  https://doi.org/10.1038/ncomms14033 Google Scholar
  29. 29.
    UniProt_Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158–D169.  https://doi.org/10.1093/nar/gkw1099 Google Scholar
  30. 30.
    Montalbetti N, Simonin A, Kovacs G, Hediger MA (2013) Mammalian iron transporters: families SLC11 and SLC40. Mol Aspects Med 34(2–3):270–287.  https://doi.org/10.1016/j.mam.2013.01.002 Google Scholar
  31. 31.
    Martinez R, Dunner S, Barrera G, Canon J (2008) Novel variants within the coding regions of the Slc11A1 gene identified in Bos taurus and Bos indicus breeds. J Anim Breed Genet 125(1):57–62.  https://doi.org/10.1111/j.1439-0388.2007.00690.x Google Scholar
  32. 32.
    Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786.  https://doi.org/10.1038/nmeth.1701 Google Scholar
  33. 33.
    Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552Google Scholar
  34. 34.
    Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182Google Scholar
  35. 35.
    Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 35(Web Server issue):W429–W432.  https://doi.org/10.1093/nar/gkm256 Google Scholar
  36. 36.
    Viklund H, Elofsson A (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24(15):1662–1668.  https://doi.org/10.1093/bioinformatics/btn221 Google Scholar
  37. 37.
    Jones DT (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23(5):538–544.  https://doi.org/10.1093/bioinformatics/btl677 Google Scholar
  38. 38.
    Tsaousis GN, Bagos PG, Hamodrakas SJ (2014) HMMpTM: improving transmembrane protein topology prediction using phosphorylation and glycosylation site prediction. Biochim Biophy Acta 1844(2):316–322.  https://doi.org/10.1016/j.bbapap.2013.11.001 Google Scholar
  39. 39.
    Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6):1633–1649.  https://doi.org/10.1002/pmic.200300771 Google Scholar
  40. 40.
    Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 2002:310–322Google Scholar
  41. 41.
    de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34(Web Server issue):W362–W365.  https://doi.org/10.1093/nar/gkl124 Google Scholar
  42. 42.
    Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res 41(Web Server issue):W349–W357.  https://doi.org/10.1093/nar/gkt381 Google Scholar
  43. 43.
    Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285.  https://doi.org/10.1093/nar/gkv1344 Google Scholar
  44. 44.
    Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195.  https://doi.org/10.1371/journal.pcbi.1002195 Google Scholar
  45. 45.
    Omasits U, Ahrens CH, Muller S, Wollscheid B (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30(6):884–886.  https://doi.org/10.1093/bioinformatics/btt607 Google Scholar
  46. 46.
    Floden EW, Tommaso PD, Chatzou M, Magis C, Notredame C, Chang JM (2016) PSI/TM-Coffee: a web server for fast and accurate multiple sequence alignments of regular and transmembrane proteins using homology extension on reduced databases. Nucleic Acids Res 44(W1):W339–W343.  https://doi.org/10.1093/nar/gkw300 Google Scholar
  47. 47.
    Sievers F, Higgins DG (2014) Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol 1079:105–116.  https://doi.org/10.1007/978-1-62703-646-7_6 Google Scholar
  48. 48.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599.  https://doi.org/10.1093/molbev/msm092 Google Scholar
  49. 49.
    Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191.  https://doi.org/10.1093/bioinformatics/btp033 Google Scholar
  50. 50.
    Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469.  https://doi.org/10.1093/nar/gkn180 Google Scholar
  51. 51.
    Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755Google Scholar
  52. 52.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242Google Scholar
  53. 53.
    Webb B, Sali A (2017) Protein structure modeling with MODELLER. Methods Mol Biol 1654:39–54.  https://doi.org/10.1007/978-1-4939-7231-9_4 Google Scholar
  54. 54.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612.  https://doi.org/10.1002/jcc.20084 Google Scholar
  55. 55.
    Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins 12(4):345–364.  https://doi.org/10.1002/prot.340120407 Google Scholar
  56. 56.
    Studer G, Biasini M, Schwede T (2014) Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane). Bioinformatics 30(17):i505–i511.  https://doi.org/10.1093/bioinformatics/btu457 Google Scholar
  57. 57.
    Bond CS (2003) TopDraw: a sketchpad for protein structure topology cartoons. Bioinformatics 19(2):311–312Google Scholar
  58. 58.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Gr 14(1):33–38, 27–38Google Scholar
  59. 59.
    Schrodinger LLC (2010) The PyMOL molecular graphics system, Version 1.7Google Scholar
  60. 60.
    Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25.  https://doi.org/10.1016/j.softx.2015.06.001 Google Scholar
  61. 61.
    Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865.  https://doi.org/10.1002/jcc.20945 Google Scholar
  62. 62.
    Wu EL, Cheng X, Jo S, Rui H, Song KC, Davila-Contreras EM, Qi Y, Lee J, Monje-Galvan V, Venable RM, Klauda JB, Im W (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35(27):1997–2004.  https://doi.org/10.1002/jcc.23702 Google Scholar
  63. 63.
    Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD Jr (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J Chem Theory Comput 8(9):3257–3273.  https://doi.org/10.1021/ct300400x Google Scholar
  64. 64.
    Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmuller H, MacKerell AD Jr (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods 14(1):71–73.  https://doi.org/10.1038/nmeth.4067 Google Scholar
  65. 65.
    Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23):7830–7843.  https://doi.org/10.1021/jp101759q Google Scholar
  66. 66.
    Li P, Roberts BP, Chakravorty DK, Merz KM Jr (2013) Rational design of particle mesh Ewald compatible Lennard-Jones parameters for + 2 metal cations in explicit solvent. J Chem Theory Comput 9(6):2733–2748.  https://doi.org/10.1021/ct400146w Google Scholar
  67. 67.
    Li P, Song LF, Merz KM Jr (2015) Parameterization of highly charged metal ions using the 12-6-4 LJ-type nonbonded model in explicit water. J Phys Chem B 119(3):883–895.  https://doi.org/10.1021/jp505875v Google Scholar
  68. 68.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690.  https://doi.org/10.1063/1.448118 Google Scholar
  69. 69.
    Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268.  https://doi.org/10.1080/00268978400101201 Google Scholar
  70. 70.
    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190.  https://doi.org/10.1063/1.328693 doiGoogle Scholar
  71. 71.
    Amadei A, Linssen AB, Berendsen HJ (1993) Essential dynamics of proteins. Proteins 17(4):412–425.  https://doi.org/10.1002/prot.340170408 Google Scholar
  72. 72.
    Klimovich PV, Shirts MR, Mobley DL (2015) Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des 29 (5):397–411.  https://doi.org/10.1007/s10822-015-9840-9 Google Scholar
  73. 73.
    Knight JL, Brooks CL (2009) Lambda-dynamics free energy simulation methods. J Comput Chem 30(11):1692–1700.  https://doi.org/10.1002/jcc.21295 Google Scholar
  74. 74.
    Pohorille A, Jarzynski C, Chipot C (2010) Good practices in free-energy calculations. J Phys Chem B 114(32):10235–10253.  https://doi.org/10.1021/jp102971x Google Scholar
  75. 75.
    Caplan DA, Subbotina JO, Noskov SY (2008) Molecular mechanism of ion-ion and ion-substrate coupling in the Na+-dependent leucine transporter LeuT. Biophys J 95(10):4613–4621.  https://doi.org/10.1529/biophysj.108.139741 Google Scholar
  76. 76.
    Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72(3):1047–1069.  https://doi.org/10.1016/S0006-3495(97)78756-3 Google Scholar
  77. 77.
    Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44(W1):W344–W350.  https://doi.org/10.1093/nar/gkw408 Google Scholar
  78. 78.
    Liu Y, Gierasch LM, Bahar I (2010) Role of Hsp70 ATPase domain intrinsic dynamics and sequence evolution in enabling its functional interactions with NEFs. PLoS Comput Biol.  https://doi.org/10.1371/journal.pcbi.1000931 Google Scholar
  79. 79.
    Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197Google Scholar
  80. 80.
    Bakan A, Dutta A, Mao W, Liu Y, Chennubhotla C, Lezon TR, Bahar I (2014) Evol and ProDy for bridging protein sequence evolution and structural dynamics. Bioinformatics 30(18):2681–2683.  https://doi.org/10.1093/bioinformatics/btu336 Google Scholar
  81. 81.
    Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190.  https://doi.org/10.1101/gr.849004 Google Scholar
  82. 82.
    Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88(6):1895–1898Google Scholar
  83. 83.
    Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132Google Scholar
  84. 84.
    Sirota FL, Maurer-Stroh S, Eisenhaber B, Eisenhaber F (2015) Single-residue posttranslational modification sites at the N-terminus, C-terminus or in-between: To be or not to be exposed for enzyme access. Proteomics 15(14):2525–2546.  https://doi.org/10.1002/pmic.201400633 Google Scholar
  85. 85.
    Xu YZ, Thuraisingam T, Kanagaratham C, Tao S, Radzioch D (2018) c-Src kinase is involved in the tyrosine phosphorylation and activity of SLC11A1 in differentiating macrophages. PLoS ONE 13(5):e0196230.  https://doi.org/10.1371/journal.pone.0196230 Google Scholar
  86. 86.
    Moharir A, Peck SH, Budden T, Lee SY (2013) The role of N-glycosylation in folding, trafficking, and functionality of lysosomal protein CLN5. PLoS ONE 8(9):e74299.  https://doi.org/10.1371/journal.pone.0074299 Google Scholar
  87. 87.
    Krishnamurthy H, Gouaux E (2012) X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481:469.  https://doi.org/10.1038/nature10737 Google Scholar
  88. 88.
    Kazmier K, Sharma S, Quick M, Islam SM, Roux B, Weinstein H, Javitch JA, McHaourab HS (2014) Conformational dynamics of ligand-dependent alternating access in LeuT. Nat Struct Mol Biol 21(5):472–479.  https://doi.org/10.1038/nsmb.2816 Google Scholar
  89. 89.
    Bozzi AT, Bane LB, Weihofen WA, McCabe AL, Singharoy A, Chipot CJ, Schulten K, Gaudet R (2016) Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters. Proc Natl Acad Sci USA 113(37):10310–10315.  https://doi.org/10.1073/pnas.1607734113 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kostas A. Triantaphyllopoulos
    • 1
    Email author
  • Fotis A. Baltoumas
    • 2
  • Stavros J. Hamodrakas
    • 2
  1. 1.Department of Animal Breeding and Husbandry, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and EnvironmentAgricultural University of AthensAthensGreece
  2. 2.Section of Cell Biology and Biophysics, Department of Biology, School of SciencesNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations