Advertisement

Journal of Computer-Aided Molecular Design

, Volume 33, Issue 1, pp 93–103 | Cite as

Blinded evaluation of cathepsin S inhibitors from the D3RGC3 dataset using molecular docking and free energy calculations

  • Ludovic Chaput
  • Edithe Selwa
  • Eddy Elisée
  • Bogdan I. IorgaEmail author
Article
  • 260 Downloads

Abstract

During the last few years, we have developed a docking protocol involving two steps: (i) the choice of the most appropriate docking software and parameters for the system of interest using structural and functional information available in public databases (PDB, ChEMBL, PubChem Assay, BindingDB, etc.); (ii) the docking of ligand dataset to provide a prediction for the binding modes and ranking of ligands. We applied this protocol to the D3R Grand Challenge 3 dataset containing cathepsin S (CatS) inhibitors. Considering the size and conformational flexibility of ligands, the docking calculations afforded reasonable overall pose predictions, which are however dependent on the specific nature of each ligand. As expected, the correct ranking of docking poses is still challenging. Post-processing of docking poses with molecular dynamics simulations in explicit solvent provided a significantly better prediction, whereas free energy calculations on a subset of compounds brought no significant improvement in the ranking prediction compared with the direct ranking obtained from the scoring function.

Keywords

Docking Ranking Scoring function Free energy calculations Cathepsin S inhibitors D3R Grand Challenge 3 

Notes

Acknowledgements

We thank Prof. Bert de Groot for helpful discussions. This work was supported by the Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LERMIT) (Agence Nationale de la Recherche, Grant Number ANR-10-LABX-33), by the JPIAMR transnational project DesInMBL (Agence Nationale de la Recherche, Grant Number ANR-14-JAMR-0002) and by the Région Ile-de-France (Conseil Régional, Île-de-France, DIM Malinf).

Supplementary material

10822_2018_161_MOESM1_ESM.pdf (3.1 mb)
The Electronic Supplementary Material contains the list of CatS crystal structures from the PDB, the chemical structures of the scoring CatS D3RGC3 dataset, and the plots showing the performance of our submissions.

References

  1. 1.
    Thurmond RL, Sun S, Karlsson L, Edwards JP (2005) Cathepsin S inhibitors as novel immunomodulators. Curr Opin Investig Drugs 6(5):473–482PubMedGoogle Scholar
  2. 2.
    Link JO, Zipfel S (2006) Advances in cathepsin S inhibitor design. Curr Opin Drug Discov Dev 9(4):471–482Google Scholar
  3. 3.
    Wiener JJ, Sun S, Thurmond RL (2010) Recent advances in the design of cathepsin S inhibitors. Curr Topics Med Chem 10(7):717–732CrossRefGoogle Scholar
  4. 4.
    Lee-Dutra A, Wiener DK, Sun S (2011) Cathepsin S inhibitors: 2004–2010. Expert Opin Ther Pat 21(3):311–337.  https://doi.org/10.1517/13543776.2011.553800 CrossRefPubMedGoogle Scholar
  5. 5.
    Wilkinson RD, Williams R, Scott CJ, Burden RE (2015) Cathepsin S: therapeutic, diagnostic, and prognostic potential. Biol Chem 396(8):867–882.  https://doi.org/10.1515/hsz-2015-0114 CrossRefPubMedGoogle Scholar
  6. 6.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein–ligand docking using GOLD. Proteins Struct Funct Bioinf 52(4):609–623.  https://doi.org/10.1002/prot.10465 CrossRefGoogle Scholar
  8. 8.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461.  https://doi.org/10.1002/jcc.21334 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Selwa E, Elisée E, Zavala A, Iorga BI (2018) Blinded evaluation of farnesoid X receptor (FXR) ligands binding using molecular docking and free energy calculations. J Comput Aided Mol Des 32(1):273–286.  https://doi.org/10.1007/s10822-017-0054-1 CrossRefPubMedGoogle Scholar
  10. 10.
    Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854.  https://doi.org/10.1093/bioinformatics/btt055 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105(28):6474–6487.  https://doi.org/10.1021/jp003919d CrossRefGoogle Scholar
  12. 12.
    Robertson MJ, Tirado-Rives J, Jorgensen WL (2015) Improved peptide and protein torsional energetics with the OPLSAA force field. J Chem Theor Comput 11(7):3499–3509.  https://doi.org/10.1021/acs.jctc.5b00356 CrossRefGoogle Scholar
  13. 13.
    Gapsys V, Michielssens S, Seeliger D, de Groot BL (2015) pmx: automated protein structure and topology generation for alchemical perturbations. J Comput Chem 36(5):348–354.  https://doi.org/10.1002/jcc.23804 CrossRefPubMedGoogle Scholar
  14. 14.
    Gapsys V, Michielssens S, Peters JH, de Groot BL, Leonov H (2015) Calculation of binding free energies. Methods Mol Biol 1215:173–209.  https://doi.org/10.1007/978-1-4939-1465-4_9 CrossRefPubMedGoogle Scholar
  15. 15.
    Gapsys V, Michielssens S, Seeliger D, de Groot BL (2016) Accurate and rigorous prediction of the changes in protein free energies in a large-scale mutation scan. Angew Chem 55(26):7364–7368.  https://doi.org/10.1002/anie.201510054 CrossRefGoogle Scholar
  16. 16.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612.  https://doi.org/10.1002/jcc.20084 CrossRefPubMedGoogle Scholar
  17. 17.
    Surpateanu G, Iorga BI (2012) Evaluation of docking performance in a blinded virtual screening of fragment-like trypsin inhibitors. J Comput Aided Mol Des 26(5):595–601.  https://doi.org/10.1007/s10822-011-9526-x CrossRefPubMedGoogle Scholar
  18. 18.
    Colas C, Iorga BI (2014) Virtual screening of the SAMPL4 blinded HIV integrase inhibitors dataset. J Comput Aided Mol Des 28(4):455–462.  https://doi.org/10.1007/s10822-014-9707-5 CrossRefPubMedGoogle Scholar
  19. 19.
    Martiny VY, Martz F, Selwa E, Iorga BI (2016) Blind pose prediction, scoring, and affinity ranking of the CSAR 2014 dataset. J Chem Inform Model 56(6):996–1003.  https://doi.org/10.1021/acs.jcim.5b00337 CrossRefGoogle Scholar
  20. 20.
    Selwa E, Martiny VY, Iorga BI (2016) Molecular docking performance evaluated on the D3R Grand Challenge 2015 drug-like ligand datasets. J Comput Aided Mol Des 30(9):829–839.  https://doi.org/10.1007/s10822-016-9983-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institut de Chimie des Substances NaturellesCNRS UPR 2301, LabEx LERMITGif-sur-YvetteFrance
  2. 2.Department of Nephrology and Dialysis, AP-HPTenon HospitalParisFrance

Personalised recommendations