Skip to main content
Log in

Convolutional neural network scoring and minimization in the D3R 2017 community challenge

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We assess the ability of our convolutional neural network (CNN)-based scoring functions to perform several common tasks in the domain of drug discovery. These include correctly identifying ligand poses near and far from the true binding mode when given a set of reference receptors and classifying ligands as active or inactive using structural information. We use the CNN to re-score or refine poses generated using a conventional scoring function, Autodock Vina, and compare the performance of each of these methods to using the conventional scoring function alone. Furthermore, we assess several ways of choosing appropriate reference receptors in the context of the D3R 2017 community benchmarking challenge. We find that our CNN scoring function outperforms Vina on most tasks without requiring manual inspection by a knowledgeable operator, but that the pose prediction target chosen for the challenge, Cathepsin S, was particularly challenging for de novo docking. However, the CNN provided best-in-class performance on several virtual screening tasks, underscoring the relevance of deep learning to the field of drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang J-C, Lin J-H (2013) Scoring functions for prediction of protein-ligand interactions. Curr Pharm Des 19(12):2174–2182

    Article  CAS  PubMed  Google Scholar 

  2. Colwell LJ (2018) Statistical and machine learning approaches to predicting protein-ligand interactions. Curr Opin Struct Biol 49:123–128

    Article  CAS  PubMed  Google Scholar 

  3. Braga RC, Alves VM, Silva AC, Nascimento MN, Silva FC, Liao LM, Andrade CH (2014) Virtual screening strategies in medicinal chemistry: the state of the art and current challenges. Curr Top Med Chem 14(16):1899–1912

    Article  CAS  PubMed  Google Scholar 

  4. Pérez-Sianes J, Pérez-Sánchez H, Díaz F (2016) Virtual screening: a challenge for deep learning. In: Mohamad MS, Rocha M, Fdez-Riverola F, De Paz JF, De Paz JF (eds) 10th International Conference on practical applications of computational biology and bioinformatics. Springer, Basel, pp 13–22

    Google Scholar 

  5. Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jansen JM, Amaro RE, Cornell W, Tseng YJ, Patrick Walters W (2012) Computational chemistry and drug discovery: a call to action. Future Med Chem 4(15):1893–1896

    Article  CAS  PubMed  Google Scholar 

  7. Boutros PC, Margolin AA, Stuart JM, Califano A, Stolovitzky G (2014) Toward better benchmarking: challenge-based methods assessment in cancer genomics. Genome Biol 15(9):462

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gathiaka S, Liu S, Chiu M, Yang H, Stuckey JA, Kang YN, Delproposto J, Kubish G, Dunbar JB, Carlson HA et al (2016) D3r grand challenge 2015: evaluation of protein-ligand pose and affinity predictions. J Comput-Aided Mol Des 30(9):651–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gaieb Z, Liu S, Gathiaka S, Chiu M, Yang H, Shao C, Feher VA, Walters WP, Kuhn B, Rudolph MG et al (2018) D3r grand challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies. J Comput-aided Mol Des 32(1):1–20

    Article  CAS  PubMed  Google Scholar 

  10. Jiménez Luna J, Skalic M, Martinez-Rosell G (2018) K deep: Protein-ligand absolute binding affinity prediction via 3d-convolutional neural networks. J Chem Inf Model 58(2):287–296

    Article  CAS  Google Scholar 

  11. Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA (2007) Predicting absolute ligand binding free energies to a simple model site. J Mol Biol 371(4):1118–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aldeghi M, Heifetz A, Bodkin MJ, Knapp S, Biggin PC (2016) Accurate calculation of the absolute free energy of binding for drug molecules. Chem Sci 7(1):207–218

    Article  CAS  PubMed  Google Scholar 

  13. Stjernschantz E, Oostenbrink C (2010) Improved ligand-protein binding affinity predictions using multiple binding modes. Biophys J 98(11):2682–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim R, Skolnick J (2008) Assessment of programs for ligand binding affinity prediction. J Comput Chem 29(8):1316–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ashtawy HM, Mahapatra NR (2012) A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction. IEEE/ACM Trans Comput Biol Bioinform 9(5):1301–1313

    Article  PubMed  Google Scholar 

  16. Carlson HA (2016) Lessons learned over four benchmark exercises from the community structure—activity resource. J Chem Inf Model 56:951–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith RD, Damm-Ganamet KL, Dunbar JB Jr, Ahmed A, Chinnaswamy K, Delproposto JE, Kubish GM, Tinberg CE, Khare SD, Dou J et al (2015) Csar benchmark exercise 2013: evaluation of results from a combined computational protein design, docking, and scoring/ranking challenge. J Chem Inf Model 56(6):1022–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carlson HA, Smith RD, Damm-Ganamet KL, Stuckey JA, Ahmed A, Convery MA, Somers DO, Kranz M, Elkins PA, Cui G et al (2016) Csar 2014: a benchmark exercise using unpublished data from pharma. J Chem Inf Model 56(6):1063–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296. https://doi.org/10.1021/acs.jctc.5b00864

    Article  CAS  PubMed  Google Scholar 

  20. Yin S, Biedermannova L, Vondrasek J, Dokholyan NV (2008) MedusaScore: an accurate force field-based scoring function for virtual drug screening. J Chem Inf Model 48(8):1656–1662. https://doi.org/10.1021/ci8001167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J. Comput. Chem. 26(16):1668–1688. https://doi.org/10.1002/jcc.20290 ISSN 1096-987X.

  22. Cheng T, Li X, Li Y, Liu Z, Wang R (2009) Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model 49(4):1079–1093. https://doi.org/10.1021/ci9000053

    Article  CAS  PubMed  Google Scholar 

  23. Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput-Aided Mol Des 15(5):411–28

    Article  CAS  PubMed  Google Scholar 

  24. Brooks BR, Bruccoleri RE, Olafson BD (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217 ISSN 1096-987X

  25. Lindahl E, Hess B, Van Der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7(8):306–317 ISSN 1610-2940

  26. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236 ISSN 0002-7863

  27. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748. https://doi.org/10.1006/jmbi.1996.0897

    Article  CAS  PubMed  Google Scholar 

  28. Koes DR, Baumgartner MP, Camacho CJ (2013) Learned lessons in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model. https://doi.org/10.1021/ci300604z

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput-Aided Mol Des 11(5):425–445

    Article  CAS  PubMed  Google Scholar 

  30. Böhm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput-Aided Mol Des 8(3):243–256 ISSN 0920-654X

  31. Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput-Aided Mol Des 16(1):11–26 ISSN 0920-654X

  32. Korb O, Stützle T, Exner TE (2009) Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model 49(1):84–96. https://doi.org/10.1021/ci800298z ISSN 1549-9596

  33. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  34. Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. https://doi.org/10.1002/jcc.21334. ISSN 1096-987X

  35. Huang SY, Zou X (2010) Mean-force scoring functions for protein-ligand binding. Annu Rep Comp Chem 6:280–296 ISSN 1574-1400

  36. Muegge I, Martin YC (1999) A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem 42(5):791–804. https://doi.org/10.1021/jm980536j

    Article  CAS  PubMed  Google Scholar 

  37. Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295(2):337–356

    Article  CAS  PubMed  Google Scholar 

  38. Zhou H, Skolnick J (2011) GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophys J 101(8):2043–2052. https://doi.org/10.1016/j.bpj.2011.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mooij WT, Verdonk ML (2005) General and targeted statistical potentials for protein-ligand interactions. Proteins 61(2):272–287. https://doi.org/10.1002/prot.20588

    Article  CAS  PubMed  Google Scholar 

  40. Ballester PJ, Mitchell JBO (2010) A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 26(9):1169. https://doi.org/10.1093/bioinformatics/btq112 ISSN 1367-4803

  41. Huang SY, Zou X (2006) An iterative knowledge-based scoring function to predict protein-ligand interactions: II. Validation of the scoring function. J Comput Chem 27(15):1876–1882. https://doi.org/10.1002/jcc.20505 ISSN 1096-987X

  42. Rojas R (2013) Neural networks: a systematic introduction. Springer Science and Business Media, Berlin

    Google Scholar 

  43. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  CAS  PubMed  Google Scholar 

  44. Durrant JD, McCammon JA (2010) Nnscore: a neural-network-based scoring function for the characterization of protein-ligand complexes. J Chem Inf Model 50(10):1865–1871. https://doi.org/10.1021/ci100244v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Durrant JD, McCammon JA (2011) Nnscore 2.0: a neural-network receptor-ligand scoring function. J Chem Inf Model 51(11):2897–2903. https://doi.org/10.1021/ci2003889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chupakhin V, Marcou G, Baskin I, Varnek A, Rognan D (2013) Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints. J Chem Inf Model 53(4):763–772. https://doi.org/10.1021/ci300200r

    Article  CAS  PubMed  Google Scholar 

  47. Ashtawy HM, Mahapatra NR (2015) Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins. BMC Bioinform 16(6):1–17. https://doi.org/10.1186/1471-2105-16-S6-S3 ISSN 1471-2105

  48. Jorissen RN, Gilson MK (2005) Virtual screening of molecular databases using a support vector machine. J Chem Inf Model 45(3):549–561. https://doi.org/10.1021/ci049641u

    Article  CAS  PubMed  Google Scholar 

  49. Zilian David, Sotriffer Christoph A (2013) Sfcscore rf: a random forest-based scoring function for improved affinity prediction of protein-ligand complexes. Journal of chemical information and modeling 53(8):1923–1933. https://doi.org/10.1021/ci400120b

    Article  CAS  PubMed  Google Scholar 

  50. Gomes J, Ramsundar B, Feinberg EN, Pande VS (2017) Atomic convolutional networks for predicting protein-ligand binding affinity. arXiv preprint arXiv:1703.10603

  51. Wallach I, Dzamba M, Heifets A (2015) Atomnet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint arXiv:1510.02855

  52. Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP (2015) Convolutional networks on graphs for learning molecular fingerprints. In: Solla SA, Leen TK, Müller KR (eds) Advances in neural information processing systems. MIT Press, London, pp 2224–2232

    Google Scholar 

  53. Schütt KT, Kindermans PJ, Sauceda HE, Chmiela S, Tkatchenko A, Müller K-R (2017) Moleculenet: a continuous-filter convolutional neural network for modeling quantum interactions. arXiv preprint arXiv:1706.08566

  54. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Solla SA, Leen TK, Müller KR (eds) Advances in neural information processing systems. MIT Press, London, pp 1097–1105

    Google Scholar 

  55. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1–9

  56. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. CoRR, abs/1512.03385.arXiv:1512.03385

  57. Ragoza M, Hochuli J, Idrobo E, Sunseri J, Koes DR (2017a) Protein-ligand scoring with convolutional neural networks. J Chem Inf Model 57(4):942–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ragoza M, Turner L, Koes DR (2017) Ligand pose optimization with atomic grid-based convolutional neural networks. arXiv preprint arXiv:1710.07400

  59. Hochuli J, Helbling A, Skaist T, Ragoza M, Koes DR (2018) Visualizing convolutional neural network protein-ligand scoring. arXiv preprint arXiv:1803.02398

  60. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu Z, Minyi S, Han L, Liu J, Yang Q, Li Y, Wang R (2017) Forging the basis for developing proteinligand interaction scoring functions. Acc Chem Res 50(2):302–309. https://doi.org/10.1021/acs.accounts.6b00491

    Article  CAS  PubMed  Google Scholar 

  62. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093

  63. rdkit. RDKit: Open-Source Cheminformatics. http://www.rdkit.org. Accessed 6 Nov 2017

  64. Kufareva I, Ilatovskiy AV, Abagyan R (2011) Pocketome: an encyclopedia of small-molecule binding sites in 4d. Nucleic Acids Res 40(D1):D535–D540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. DeLano WL, Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8. (2015)

  66. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminf 3(1):33

    Article  CAS  Google Scholar 

  67. Shewchuk LM, Hassell AM, Ellis B, Holmes WD, Davis R, Horne EL, Kadwell SH, McKee DD, Moore JT (2000) Structure of the tie2 rtk domain: self-inhibition by the nucleotide binding loop, activation loop, and c-terminal tail. Structure 8(11):1105–1113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.S. is supported by a fellowship from The Molecular Sciences Software Institute under NSF Grant ACI-1547580. This work is supported by R01GM108340 from the National Institute of General Medical Sciences and by a GPU donation from the NVIDIA corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ryan Koes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunseri, J., King, J.E., Francoeur, P.G. et al. Convolutional neural network scoring and minimization in the D3R 2017 community challenge. J Comput Aided Mol Des 33, 19–34 (2019). https://doi.org/10.1007/s10822-018-0133-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0133-y

Keywords

Navigation