Journal of Computer-Aided Molecular Design

, Volume 32, Issue 7, pp 781–791 | Cite as

Theoretical models to predict the inhibitory effect of ligands of sphingosine kinase 1 using QTAIM calculations and hydrogen bond dynamic propensity analysis

  • Marcela Vettorazzi
  • Cintia Menéndez
  • Lucas Gutiérrez
  • Sebastián Andujar
  • Gustavo Appignanesi
  • Ricardo D. Enriz


We report here the results of two theoretical models to predict the inhibitory effect of inhibitors of sphingosine kinase 1 that stand on different computational basis. The active site of SphK1 is a complex system and the ligands under the study possess a significant conformational flexibility; therefore for our study we performed extended simulations and proper clusterization process. The two theoretical approaches used here, hydrogen bond dynamics propensity analysis and Quantum Theory of Atoms in Molecules (QTAIM) calculations, exhibit excellent correlations with the experimental data. In the case of the hydrogen bond dynamics propensity analysis, it is remarkable that a rather simple methodology with low computational requirements yields results in excellent accord with experimental data. In turn QTAIM calculations are much more computational demanding and are also more complex and tedious for data analysis than the hydrogen bond dynamic propensity analysis. However, this greater computational effort is justified because the QTAIM study, in addition to giving an excellent correlation with the experimental data, also gives us valuable information about which parts or functional groups of the different ligands are those that should be replaced in order to improve the interactions and thereby to increase the affinity for SphK1. Our results indicate that both approaches can be very useful in order to predict the inhibiting effect of new compounds before they are synthesized.


Sphingosine kinase inhibitors QTAIM calculations Hydrogen bond dynamic propensity analysis Theoretical approaches 



Grants from Universidad Nacional de San Luis (UNSL-Argentina) partially supported this work. This work was supported in part by a grant from MinCyt (PICT-2015/1769). GAA and CAM  acknowledge financial support from CONICET, UNS and MinCyt (PICT-2015/1893).


  1. 1.
    Maceyka M, Payne SG, Milstien S, Spiegel S (2002) Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 1585:193–201CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hait NC, Oskeritzian CA, Paugh SW et al (2006) Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta 1758:2016–2026CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Taha TA, Mullen TD, Obeid LM (2006) A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death. Biochim Biophys Acta 1758:2027–2036. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wattenberg BW (2010) Role of sphingosine kinase localization in sphingolipid signaling. World J Biol Chem 1:362–368. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ricci C, Onida F, Ghidoni R (2006) Sphingolipid players in the leukemia arena. Biochim Biophys Acta 1758:2121–2132. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cuvillier O (2002) Sphingosine in apoptosis signaling. Biochim Biophys Acta 1585:153–162CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang Z, Min X, Xiao S-H et al (2013) Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure 21:798–809. CrossRefGoogle Scholar
  8. 8.
    Gustin DJ, Li Y, Brown ML et al (2013) Structure guided design of a series of sphingosine kinase (SphK) inhibitors. Bioorg Med Chem Lett 23:4608–4616. CrossRefGoogle Scholar
  9. 9.
    Wang J, Knapp S, Pyne NJ et al (2014) Crystal structure of sphingosine kinase 1 with PF-543. ACS Med Chem Lett 5:1329–1333. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lima S, Spiegel S (2013) Sphingosine kinase: a closer look at last. Structure 21:690–692. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    French KJ, Schrecengost RS, Lee BD et al (2003) Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 63:5962–5969Google Scholar
  12. 12.
    Schnute ME, McReynolds MD, Kasten T et al (2012) Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1. Biochem J 444:79–88. CrossRefGoogle Scholar
  13. 13.
    Paugh SW, Paugh BS, Rahmani M et al (2008) A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 112:1382–1391. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Orr Gandy KA, Obeid LM (2013) Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: review of sphingosine kinase inhibitors. Biochim Biophys Acta 1831:157–166. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vettorazzi M, Angelina E, Lima S et al (2017) An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors. Eur J Med Chem 139:461–481. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Case DA, Babin V, Berryman JT et al (2014) {Amber 14} OR, University of California, San FranciscoGoogle Scholar
  18. 18.
    Lindorff-Larsen K, Piana S, Palmo K et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. CrossRefGoogle Scholar
  20. 20.
    Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954–9960. CrossRefGoogle Scholar
  21. 21.
    Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD (2001) Langevin stabilization of molecular dynamics. J Chem Phys 114:2090–2098. CrossRefGoogle Scholar
  22. 22.
    Essmann U, Perera L, Berkowitz ML et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:31–34Google Scholar
  23. 23.
    Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897. CrossRefGoogle Scholar
  24. 24.
    Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15. CrossRefGoogle Scholar
  25. 25.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. CrossRefGoogle Scholar
  26. 26.
    Gutierrez LJ, Angelina E, Gyebrovszki A et al (2016) New small-size peptides modulators of the exosite of BACE1 obtained from a structure-based design. J Biomol Struct Dyn. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gutierrez LJ, Barrera Guisasola EE, Peruchena N, Enriz RD (2016) A QM/MM study of the molecular recognition site of bapineuzumab toward the amyloid-β peptide isoforms. Mol Simul. CrossRefGoogle Scholar
  28. 28.
    Vega-Hissi EG, Tosso R, Enriz RD, Gutierrez LJ (2015) Molecular insight into the interaction mechanisms of amino-2H-imidazole derivatives with BACE1 protease: a QM/MM and QTAIM study. Int J Quantum Chem. CrossRefGoogle Scholar
  29. 29.
    Barrera Guisasola EE, Gutiérrez LJ, Salcedo RE et al (2016) Conformational transition of Aβ42 inhibited by a mimetic peptide. A molecular modeling study using QM/MM calculations and QTAIM analysis. Comput Theor Chem. CrossRefGoogle Scholar
  30. 30.
    Luchi AM, Angelina EL, Andujar SA et al (2016) Halogen bonding in biological context: a computational study of D2 dopamine receptor. J Phys Org Chem 29:645–655. CrossRefGoogle Scholar
  31. 31.
    Parraga J, Cabedo N, Andujar S et al (2013) 2,3,9- and 2,3,11-trisubstituted tetrahydroprotoberberines as D2 dopaminergic ligands. Eur J Med Chem 68:150–166. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Parraga J, Andujar SA, Rojas S et al (2016) Dopaminergic isoquinolines with hexahydrocyclopenta[ij]-isoquinolines as D2-like selective ligands. Eur J Med Chem 122:27–42. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Andujar S, Tosso RD, Suvire FD et al (2012) Searching the “biologically relevant”conformation of dopamine: a computational approach. J Chem Inf Model 52:99–112. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Angelina EL, Andujar SA, Tosso RD et al (2014) Non-covalent interactions in receptor–ligand complexes. A study based on the electron charge density. J Phys Org Chem 27:128–134. CrossRefGoogle Scholar
  35. 35.
    Tosso R, Vettorazzi M, Andujar A S, et al (2016) The electronic density obtained from a QTAIM analysis used as molecular descriptor. A study performed in a new series of DHFR inhibitors. J Mol Struct 1134:464–474Google Scholar
  36. 36.
    Tosso RD, Andujar SA, Gutierrez L et al (2013) Molecular modeling study of dihydrofolate reductase inhibitors. Molecular dynamics simulations, quantum mechanical calculations, and experimental corroboration. J Chem Inf Model 53:2018–2032. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ortiz JE, Garro A, Pigni NB et al (2018) Cholinesterase-inhibitory effect and in silico analysis of alkaloids from bulbs of Hieronymiella species. Phytomedicine 39:66–74. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Siano A, Garibotto FF, Andujar SA et al (2017) Molecular design and synthesis of novel peptides from amphibians skin acting as inhibitors of cholinesterase enzymes. J Pept Sci 23:236–244. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gutierrez LJ, Parravicini O, Sanchez E et al (2018) New substituted aminopyrimidine derivatives as BACE1 inhibitors: in silico design, synthesis and biological assays. J Biomol Struct Dyn. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gutierrez LJ, Angelina E, Gyebrovszki A et al (2017) New small-size peptides modulators of the exosite of BACE1 obtained from a structure-based design. J Biomol Struct Dyn 35:413–426. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Durham E, Dorr B, Woetzel N et al (2009) Solvent accessible surface area approximations for rapid and accurate protein structure prediction. J Mol Model 15:1093–1108. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Menendez CA, Accordino SR, Gerbino DC, Appignanesi GA (2016) Hydrogen bond dynamic propensity studies for protein binding and drug design. PLoS ONE 11:e0165767. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Menendez CA, Accordino SR, Gerbino DC, Appignanesi GA (2015) “Chameleonic” backbone hydrogen bonds in protein binding and as drug targets. Eur Phys J E 38:107. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Marcela Vettorazzi
    • 1
    • 2
  • Cintia Menéndez
    • 3
  • Lucas Gutiérrez
    • 1
    • 2
  • Sebastián Andujar
    • 1
    • 2
  • Gustavo Appignanesi
    • 3
  • Ricardo D. Enriz
    • 1
    • 2
  1. 1.Facultad de Química, Bioquímica y FarmaciaUniversidad Nacional de San LuisSan LuisArgentina
  2. 2.IMIBIO-CONICET, UNSLSan LuisArgentina
  3. 3.INQUISUR, Departamento de QuímicaUniversidad Nacional del Sur (UNS)-CONICETBahía BlancaArgentina

Personalised recommendations