Advertisement

Journal of Computer-Aided Molecular Design

, Volume 31, Issue 11, pp 1021–1028 | Cite as

Computational modeling and in-vitro/in-silico correlation of phospholipid-based prodrugs for targeted drug delivery in inflammatory bowel disease

  • Arik Dahan
  • Milica Markovic
  • Shahar Keinan
  • Igor Kurnikov
  • Aaron Aponick
  • Ellen M. Zimmermann
  • Shimon Ben-Shabat
Article

Abstract

Targeting drugs to the inflamed intestinal tissue(s) represents a major advancement in the treatment of inflammatory bowel disease (IBD). In this work we present a powerful in-silico modeling approach to guide the molecular design of novel prodrugs targeting the enzyme PLA2, which is overexpressed in the inflamed tissues of IBD patients. The prodrug consists of the drug moiety bound to the sn-2 position of phospholipid (PL) through a carbonic linker, aiming to allow PLA2 to release the free drug. The linker length dictates the affinity of the PL-drug conjugate to PLA2, and the optimal linker will enable maximal PLA2-mediated activation. Thermodynamic integration and Weighted Histogram Analysis Method (WHAM)/Umbrella Sampling method were used to compute the changes in PLA2 transition state binding free energy of the prodrug molecule (∆∆Gtr) associated with decreasing/increasing linker length. The simulations revealed that 6-carbons linker is the optimal one, whereas shorter or longer linkers resulted in decreased PLA2-mediated activation. These in-silico results were shown to be in excellent correlation with experimental in-vitro data. Overall, this modern computational approach enables optimization of the molecular design of novel prodrugs, which may allow targeting the free drug specifically to the diseased intestinal tissue of IBD patients.

Keywords

Drug targeting Inflammatory bowel disease (IBD) Molecular dynamics Phospholipase A2 (PLA2Prodrug Thermodynamic integration Umbrella sampling/WHAM 

Notes

Acknowledgements

This work was funded through the US-Israel Binational Science Foundation (BSF) Grant No: 2015365. This work is a part of Ms. Milica Markovic PhD dissertation.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

References

  1. 1.
    Dahan A, Zimmermann EM, Ben-Shabat S (2014) Molecules 19(10):16489CrossRefGoogle Scholar
  2. 2.
    Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Jarvinen T, Savolainen J (2008) Nat Rev Drug Discov 7(3):255CrossRefGoogle Scholar
  3. 3.
    Yu LS (1981) J Clin Pharm Ther 6(4):287CrossRefGoogle Scholar
  4. 4.
    Ettmayer P, Amidon GL, Clement B, Testa B (2004) J Med Chem 47(10):2393CrossRefGoogle Scholar
  5. 5.
    Sun J, Dahan A, Amidon GL (2010) J Med Chem 53(2):624CrossRefGoogle Scholar
  6. 6.
    Sun J, Dahan A, Walls ZF, Lai L, Lee KD, Amidon GL (2010) Mol Pharm 7(6):2362CrossRefGoogle Scholar
  7. 7.
    Bai JPF, Hu M, Subramanian P, Mosberg HI, Amidon GL (1992) J Pharm Sci 81(2):113CrossRefGoogle Scholar
  8. 8.
    Dahan A, Wolk O, Yang P, Mittal S, Wu Z, Landowski CP, Amidon GL (2014) Mol Pharm 11(12):4385CrossRefGoogle Scholar
  9. 9.
    Fleisher D, Stewart BH, Amidon GL (1985) Methods Enzymol 112:360CrossRefGoogle Scholar
  10. 10.
    Banerjee PK, Amidon GL (1985) Design of prodrugs. Elsevier, New York, p 93Google Scholar
  11. 11.
    Han H, de Vrueh RL, Rhie JK, Covitz KM, Smith PL, Lee CP, Oh DM, Sadee W, Amidon GL (1998) Pharm Res 15(8):1154CrossRefGoogle Scholar
  12. 12.
    Sabit H, Dahan A, Sun J, Provoda CJ, Lee K-D, Hilfinger JH, Amidon GL (2013) Mol Pharm 10(4):1417CrossRefGoogle Scholar
  13. 13.
    Dahan A, Khamis M, Agbaria R, Karaman R (2012) Expert Opin Drug Deliv 9(8):1001CrossRefGoogle Scholar
  14. 14.
    Han HK, Amidon GL (2000) AAPS PharmSci 2(1): E6CrossRefGoogle Scholar
  15. 15.
    Hoult JR (1986) Drugs 32(Suppl 1):18CrossRefGoogle Scholar
  16. 16.
    Stella VJ, Himmelstein KJ (1980) J Med Chem 23(12):1275CrossRefGoogle Scholar
  17. 17.
    Kesisoglou F, Zimmermann EM (2005) Expert Opin Drug Deliv 2(3):451CrossRefGoogle Scholar
  18. 18.
    Dahan A, Amidon GL, Zimmermann EM (2010) Expert Rev Clin Immunol 6(4):543CrossRefGoogle Scholar
  19. 19.
    Biasi F, Leonarduzzi G, Oteiza PI, Poli G (2013) Antioxid Redox Signal 19(14):1711CrossRefGoogle Scholar
  20. 20.
    Wolk O, Epstein S, Ioffe-Dahan V, Ben-Shabat S, Dahan A (2013) Expert Opin Drug Deliv 10(9):1275CrossRefGoogle Scholar
  21. 21.
    Kurz M, Scriba GK (2000) Chem Phys Lipids 107(2):143CrossRefGoogle Scholar
  22. 22.
    Haapamäki MM, Grönroos JM, Nurmi H, Alanen K, Kallajoki M, Nevalainen TJ (1997) Gut 40(1):95CrossRefGoogle Scholar
  23. 23.
    Lilja I, Smedh K, Olaison G, Sjödahl R, Tagesson C, Gustafson-Svärd C (1995) Gut 37(3):380CrossRefGoogle Scholar
  24. 24.
    Minami T, Tojo H, Shinomura Y, Matsuzawa Y, Okamoto M (1994) Gut 35(11):1593CrossRefGoogle Scholar
  25. 25.
    Haapamaki MM, Gronroos JM, Nurmi H, Irjala K, Alanen KA, Nevalainen TJ (1999) Scand J Clin Lab Invest 59(4):279CrossRefGoogle Scholar
  26. 26.
    Andresen TL, Jensen SS, Kaasgaard T, Jorgensen K (2005) Curr Drug Deliv 2(4):353CrossRefGoogle Scholar
  27. 27.
    Hansen AH, Mouritsen OG, Arouri A (2015) Int J Pharm 491(1–2):49CrossRefGoogle Scholar
  28. 28.
    Lattig J, Bohl M, Fischer P, Tischer S, Tietbohl C, Menschikowski M, Gutzeit HO, Metz P, Pisabarro MT (2007) J Comput Aided Mol Des 21(8):473CrossRefGoogle Scholar
  29. 29.
    Dahan A, Ben-Shabat S, Cohen N, Keinan S, Kurnikov I, Aponick A, Zimmermann EM (2016) Curr Top Med Chem 16(23):2543CrossRefGoogle Scholar
  30. 30.
    Dahan A, Duvdevani R, Dvir E, Elmann A, Hoffman A (2007) J Control Release 119(1):86CrossRefGoogle Scholar
  31. 31.
    Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) SoftwareX 1–2:19CrossRefGoogle Scholar
  32. 32.
    Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) J Comput Chem 13(8):1011CrossRefGoogle Scholar
  33. 33.
    Straatsma TP, Berendsen HJC (1988) J Chem Phys 89(9):5876CrossRefGoogle Scholar
  34. 34.
    Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS (2011) Curr Opin Struct Biol 21(2):150CrossRefGoogle Scholar
  35. 35.
    Dvir E, Friedman JE, Lee JY, Koh JY, Younis F, Raz S, Shapiro I, Hoffman A, Dahan A, Rosenberg G, Angel I, Kozak A, Duvdevani R (2006) J Pharmacol Exp Ther 318(3):1248CrossRefGoogle Scholar
  36. 36.
    Dahan A, Hoffman A (2007) Drug Metab Dispos 35(2):321CrossRefGoogle Scholar
  37. 37.
    Dvir E, Elman A, Simmons D, Shapiro I, Duvdevani R, Dahan A, Hoffman A, Friedman JE (2007) CNS Drug Rev 13(2):260CrossRefGoogle Scholar
  38. 38.
    Dahan A, Duvdevani R, Shapiro I, Elmann A, Finkelstein E, Hoffman A (2008) J Control Release 126(1):1CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health SciencesBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Cloud Pharmaceuticals Inc.Research Triangle ParkUSA
  3. 3.Department of ChemistryUniversity of FloridaGainesvilleUSA
  4. 4.Department of Medicine, Division of GastroenterologyUniversity of FloridaGainesvilleUSA

Personalised recommendations