TMDIM: an improved algorithm for the structure prediction of transmembrane domains of bitopic dimers

  • Han Cao
  • Marcus C. K. Ng
  • Siti Azma Jusoh
  • Hio Kuan Tai
  • Shirley W. I. Siu
Article

Abstract

\(\alpha\)-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577–585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM. Website is implemented in PHP, MySQL and Apache, with all major browsers supported.

Keywords

Structure prediction Bitopic dimer Helix packing Helix assembly Scwrl4 Bioinformatics 

References

  1. 1.
    Bakan A, Meireles LM, Bahar I (2011) ProDy: protein dynamics inferred from theory and experiments. Bioinformatics 11:1575–1577CrossRefGoogle Scholar
  2. 2.
    Bocharov EV, Pustovalova YE, Pavlov KV, Volynsky PE, Goncharuk MV, Ermolyuk YS, Karpunin DV, Schulga AA, Kirpichnikov MP, Efremov RG, Maslennikov IV, Arseniev AS (2007) Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J Biol Chem 282:16256–16266CrossRefGoogle Scholar
  3. 3.
    Bocharov EV, Mayzel ML, Volynsky PE, Goncharuk MV, Ermolyuk YS, Schulga AA, Artemenko EO, Efremov RG, Arseniev AS (2008) Spatial structure and pH-dependent conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase EphA1. J Biol Chem 283:29385–29395CrossRefGoogle Scholar
  4. 4.
    Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, Chupin VV, Kirpichnikov MP, Efremov RG, Arseniev AS (2008) Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J Biol Chem 283:6950–6956CrossRefGoogle Scholar
  5. 5.
    Bocharov EV, Mineev KS, Goncharuk MV, Arseniev AS (2012) Structural and thermodynamic insight into the process of weak dimerization of the ErbB4 transmembrane domain by solution NMR. Biochim Biophys Acta 1818:2158–2170CrossRefGoogle Scholar
  6. 6.
    Bocharov EV, Lesovoy MD, Goncharuk SA, Goncharuk MV, Hristova K, Arseniev AS (2013) Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies. Structure 21:2087–2093CrossRefGoogle Scholar
  7. 7.
    Canutescu AA, Shelenkov AA, Dunbrack RL (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 12:2001–2014CrossRefGoogle Scholar
  8. 8.
    Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufreiv A, Simmerling C, Wang B, Woods RJ (2005) The amber biomolecular simulation programs. J Comp Chem 26:1668–1688CrossRefGoogle Scholar
  9. 9.
    Doerr A (2009) Membrane protein structures. Nat Methods 6:35–35CrossRefGoogle Scholar
  10. 10.
    Ducarme P, Thomas A, Brasseur R (2000) The optimisation of the helix/helix interaction of a transmembrane dimer is improved by the IMPALA restraint field. Biochim Biophys Acta 1509:148–154CrossRefGoogle Scholar
  11. 11.
    Endres N, Das R, Smith A, Arkhipov A, Kovacs E, Huang Y, Pelton J, Shan Y, Shaw D, Wemmer D, Groves J, Kuriyan J (2013) Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152:543–556CrossRefGoogle Scholar
  12. 12.
    Fleishman SJ, Ben-Tal N (2002) A novel scoring function for predicting the conformations of tightly packed pairs of transmembrane alpha-helices. J Mol Biol 321:363–378CrossRefGoogle Scholar
  13. 13.
    Fuchs A, Martin-Galiano AJ, Kalman M, Fleishman S, Ben-Tal N, Frishman D (2007) Co-evolving residues in membrane proteins. Bioinformatics 23:3312–3319CrossRefGoogle Scholar
  14. 14.
    Kim S, Chamberlain AK, Bowie JU (2003) A simple method for modeling transmembrane helix oligomers. J Mol Biol 329:831–840CrossRefGoogle Scholar
  15. 15.
    Kim S, Jeon TJ, Oberai A, Yang D, Schmidt JJ, Bowie JU (2005) Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc Natl Acad Sci USA 102:14278–14283CrossRefGoogle Scholar
  16. 16.
    Kohlbacher O, Lenhof HP (2000) BALL-rapid software prototyping in computational molecular biology. Bioinformatics 16:815–824CrossRefGoogle Scholar
  17. 17.
    Krivov GG, Shapovalov MV, Dunbrack RL (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77:778–795CrossRefGoogle Scholar
  18. 18.
    Li E, Wimley WC, Hristova K (2012) Transmembrane helix dimerization: beyond the search for sequence motifs. Biochim Biophys Acta 1818:183–193CrossRefGoogle Scholar
  19. 19.
    Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI (2006) Opm: orientations of proteins in membranes database. Bioinformatics 22:623–625CrossRefGoogle Scholar
  20. 20.
    MacKenzie KR, Prestegard JH, Engelman DM (1997) A transmembrane helix dimer: structure and implications. Science 276:131–133CrossRefGoogle Scholar
  21. 21.
    Miao Z, Cao Y, Jiang T (2011) RASP: rapid modeling of protein side chain conformations. Bioinformatics 27:3117–3122CrossRefGoogle Scholar
  22. 22.
    Mineev KS, Khabibullina NF, Lyukmanova EN, Dolgik DA, Kirpichnikov MP, Arseniev AS (2011) Spatial structure and dimermonomer equilibrium of the ErbB3 transmembrane domain in DPC micelles. Biochim Biophys Acta 1808:2081–2088CrossRefGoogle Scholar
  23. 23.
    Mueller BK, Subramaniam S, Senes A (2014) A frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical C\(\alpha\)-H hydrogen bonds. Proc Natl Acad Sci USA 111:E888–95CrossRefGoogle Scholar
  24. 24.
    Muhle-Goll C, Hoffmann S, Afonin S, Grage SL, Polyansky AA, Windisch D, Zeitler M, Brck J, Ulrich AS (2012) Hydrophobic matching controls the tilt and stability of the dimeric platelet-derived growth factor receptor (PDGFR) \(\beta\) transmembrane segment. J Biol Chem 287:26178–26186CrossRefGoogle Scholar
  25. 25.
    Park Y, Helms V (2006) Assembly of transmembrane helices of simple polytopic membrane proteins from sequence conservation patterns. Proteins 64:895–905CrossRefGoogle Scholar
  26. 26.
    Park Y, Elsner M, Staritzbichler R, Helms V (2004) Novel scoring function for modeling structures of oligomers of transmembrane \(\alpha\)-helices. Proteins 57:577–585CrossRefGoogle Scholar
  27. 27.
    Polyansky AA, Volynsky PE, Efremov RG (2011) Structural, dynamic, and functional aspects of helix association in membranes: a computational view. Adv Protein Chem Struct Biol 83:129–161CrossRefGoogle Scholar
  28. 28.
    Polyansky AA, Volynsky PE, Efremov RG (2012) Multistate organization of transmembrane helical protein dimers governed by the host membrane. J Am Chem Soc 134:14390–14400CrossRefGoogle Scholar
  29. 29.
    Polyansky AA, Chugunov AO, Volynsky PE, Krylov NA, Nolde DE, Efremov RG (2014) PREDDIMER: a web server for prediction of transmembrane helical dimers. Bioinformatics 30:889–890CrossRefGoogle Scholar
  30. 30.
    Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29:4031–4037CrossRefGoogle Scholar
  31. 31.
    Psachoulia E, Fowler PW, Bond PJ, Sansom MS (2008) Helix-helix interactions in membrane proteins: Coarse-grained simulations of glycophorin A helix dimerization. Biochemistry 47:10503–10512CrossRefGoogle Scholar
  32. 32.
    Psachoulia E, Marshall DP, Sansom MS (2009) Molecular dynamics simulations of the dimerization of transmembrane \(\alpha\)-helices. Acc Chem Res 43:388–396CrossRefGoogle Scholar
  33. 33.
    R Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/
  34. 34.
    Russ WP, Engelman DM (2000) The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 296:911–919CrossRefGoogle Scholar
  35. 35.
    Shortle D, Simons KT, Baker D (1998) Clustering of low-energy conformations near the native structures of small proteins. Proc Natl Acad Sci USA 95:11158–11162CrossRefGoogle Scholar
  36. 36.
    Vereshaga YA, Volynsky PE, Nolde DE, Arseniev AS, Efremov RG (2005) Helix interactions in membranes: lessons from unrestrained monte carlo simulations. J Chem Theory Comput 1:1252–1264CrossRefGoogle Scholar
  37. 37.
    Wan CK, Han W, Wu YD (2011) Parameterization of PACE force field for membrane environment and simulation of helical peptides and helix-helix association. J Chem Theory Comput 8:300–313CrossRefGoogle Scholar
  38. 38.
    Yıldırım MA, Goh KI, Cusick ME, Barabási AL, Vidal M (2007) Drug-target network. Nat Biotechnol 25:1119–1126CrossRefGoogle Scholar
  39. 39.
    Zhang L, Sodt AJ, Venable RM, Pastor RW, Matthias B (2013) Prediction, refinement, and persistency of transmembrane helix dimers in lipid bilayers using implicit and explicit solvent/lipid representations: Microsecond molecular dynamics simulations of ErbB1/B2 and EphA1. Proteins 81:365–376CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Han Cao
    • 1
  • Marcus C. K. Ng
    • 1
  • Siti Azma Jusoh
    • 2
  • Hio Kuan Tai
    • 1
  • Shirley W. I. Siu
    • 1
  1. 1.Department of Computer and Information Science, Faculty of Science and TechnologyUniversity of MacauTaipaChina
  2. 2.Department of Pharmaceutical Life Sciences, Faculty of PharmacyUniversiti Teknologi MARA Cawangan SelangorSelangorMalaysia

Personalised recommendations