Journal of Computer-Aided Molecular Design

, Volume 31, Issue 6, pp 563–575 | Cite as

Assessing protein–ligand binding modes with computational tools: the case of PDE4B

  • Gülşah Çifci
  • Viktorya Aviyente
  • E. Demet Akten
  • Gerald Monard


In a first step in the discovery of novel potent inhibitor structures for the PDE4B family with limited side effects, we present a protocol to rank newly designed molecules through the estimation of their IC\(_{50}\) values. Our protocol is based on reproducing the linear relationship between the logarithm of experimental IC\(_{50}\) values [\(\log\)(IC\(_{50}\))] and their calculated binding free energies (\(\Delta G_\mathrm{binding}\)). From 13 known PDE4B inhibitors, we show here that (1) binding free energies obtained after a docking process by AutoDock are not accurate enough to reproduce this linear relationship; (2) MM-GB/SA post-processing of molecular dynamics (MD) trajectories of the top ranked AutoDock pose improves the linear relationship; (3) by taking into account all representative structures obtained by AutoDock and by averaging MM-GB/SA computations on a series of 40 independent MD trajectories, a linear relationship between \(\log\)(IC\(_{50}\)) and the lowest \(\Delta G_\mathrm{binding}\) is achieved with \(R^2=0.944\).


PDE4B IC50 Molecular docking Molecular dynamics MM-GB/SA 



G. Çifci, V. Aviyente received fundings from TUBITAK through Project 113Z001. G. Monard received fundings from CNRS through Project EDC25780. Computing resources used in this work were partially provided by the Centre de Calcul ROMEO of the Université de Reims Champagne-Ardenne, the State Planning Organization (DPT-2009K120520) and the Bogazici University Research Foundation (BAP-1856).

Supplementary material

10822_2017_24_MOESM1_ESM.pdf (268 kb)
Supplementary material 1 (pdf 269 KB)


  1. 1.
    Torphy TJ (1998) Phosphodiesterase isozymes—molecular targets for novel antiasthma agents. Am J Respir Crit Care Med 157(2):351–370CrossRefGoogle Scholar
  2. 2.
    Conti M, Jin SLC (2000) The molecular biology of cyclic nucleotide phosphodiesterases. Prog Nucleic Acid Res Mol Biol 63:1–38CrossRefGoogle Scholar
  3. 3.
    Soderling SH, Beavo JA (2000) Regulation Of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol 12(2):174–179CrossRefGoogle Scholar
  4. 4.
    Callahan SM, Cornell NW, Dunlap PV (1995) Purification and properties of periplasmic 3’/5’-cyclic nucleotide phocphodiesterase—a novel zinc-containing enzyme from the marine symbiotic bacterium Vibrio-Fischeria. J Biol Chem 270(29):627–17, 632CrossRefGoogle Scholar
  5. 5.
    Houslay MD, Milligan G (1997) Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci 22(6):217–224CrossRefGoogle Scholar
  6. 6.
    Houslay MD, Sullivan M, Bolger GB (1998) The multienzyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family: intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions. Adv Pharmacol 44:225–342CrossRefGoogle Scholar
  7. 7.
    Antoni FA (2000) Molecular diversity of cyclic AMP signalling. Front Neuroendocrinol 21(2):103–132CrossRefGoogle Scholar
  8. 8.
    Xu RX, Hassell AM, Vanderwall D, Lambert MH, Holmes WD, Luther MA, Rocque WJ, Milburn MV, Zhao YD, Ke HM, Nolte RT (2000) Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity. Science 288(5472):1822–1825CrossRefGoogle Scholar
  9. 9.
    Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KYJ (2004) Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure 12(12):2233–2247CrossRefGoogle Scholar
  10. 10.
    Houslay MD, Schafer P, Zhang KYJ (2005) Phosphodiesterase-4 as a therapeutic target. Drug Discov Today 10(22):1503–1519CrossRefGoogle Scholar
  11. 11.
    Ke H, Wang H (2007) Crystal structures of phosphodiesterases and implications on substrate specificity and inhibitor selectivity. Curr Top Med Chem 7(4):391–403CrossRefGoogle Scholar
  12. 12.
    Thompson WJ (1991) Cyclic-nucleotide phosphodiesterases - pharmacology, biochemistry and function. Pharmacol Ther 51(1):13–33CrossRefGoogle Scholar
  13. 13.
    Mehats C, Andersen CB, Filopanti M, Jin SLC, Conti M (2002) Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab 13(1):29–35CrossRefGoogle Scholar
  14. 14.
    Giembycz MA (2000) Phosphodiesterase 4 inhibitors and the treatment of asthma—where are we now and where do we go from here? Drugs 59(2):193–212CrossRefGoogle Scholar
  15. 15.
    Souness JE, Aldous D, Sargent C (2000) Immunosuppressive and anti-inflammatory effects of cyclic amp phosphodiesterase (PDE) type 4 inhibitors. Immunopharmacology 47(2–3):127–162CrossRefGoogle Scholar
  16. 16.
    Huang Z, Ducharme Y, Macdonald D, Robichaud A (2001) The next generation of PDE4 inhibitors. Curr Opin Chem Biol 5(4):432–438CrossRefGoogle Scholar
  17. 17.
    Sturton G, Fitzgerald M (2002) Phosphodiesterase 4 inhibitors for the treatment of COPD. Chest 121(5):192s–196sCrossRefGoogle Scholar
  18. 18.
    Huai Q, Wang HC, Sun YJ, Kim HY, Liu YD, Ke HM (2003) Three-dimensional structures of PDE4D in complex with roliprams on inhibitor selectivity. Structure 11(7):865–873CrossRefGoogle Scholar
  19. 19.
    Kang NS, Hong SJ, Chae CH, Yoo SE (2007) Comparative molecular field analysis (CoMFA) for phosphodiesterase (PDE) IV inhibitors. J Mol Struct (THEOCHEM) 820(1–3):58–64CrossRefGoogle Scholar
  20. 20.
    Kongsted J, Ryde U (2009) An improved method to predict the entropy term with the MM/PBSA approach. J Comput Aided Mol Des 23(2):63–71CrossRefGoogle Scholar
  21. 21.
    Rastelli G, Degliesposti G, Del Rio A, Sgobba M (2009) Binding estimation after refinement, a new automated procedure for the refinement and rescoring of docked ligands in virtual screening. Chem Biol Drug Des 73(3):283–286CrossRefGoogle Scholar
  22. 22.
    Genheden S, Luchko T, Gusarov S, Kovalenko A, Ryde U (2010) An MM/3D-RISM approach for ligand binding affinities. J Phys Chem B 114(25):8505–8516CrossRefGoogle Scholar
  23. 23.
    Rastelli G, Del Rio A, Degliesposti G, Sgobba M (2010) Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem 31(4):797–810Google Scholar
  24. 24.
    Yuriev E, Agostino M, Ramsland PA (2011) Challenges and advances in computational docking: 2009 in review. J Mol Recognit 24(2):149–164. doi: 10.1002/jmr.1077 CrossRefGoogle Scholar
  25. 25.
    Yuriev E, Ramsland PA (2013) Latest developments in molecular docking: 2010–2011 in review. J Mol Recognit 26(5):215–239. doi: 10.1002/jmr.2266 CrossRefGoogle Scholar
  26. 26.
    Alexander RP, Warrellow GJ, Eaton MA, Boyd EC, Head JC, Porter JR, Brown JA, Reuberson JT, Hutchinson B, Turner P, Boyce B, Barnes D, Mason B, Cannell A, Taylor RJ, Zomaya A, Millican A, Leonard J, Morphy R, Wales M, Perry M, Allen RA, Gozzard N, Hughes B, Higgs G (2002) CDP840. A prototype of a novel class of orally active anti-inflammatory phosphodiesterase 4 inhibitors. Bioorg Med Chem Lett 12(11):1451–1456CrossRefGoogle Scholar
  27. 27.
    Kuang R, Shue HJ, Blythin DJ, Shih NY, Gu D, Chen X, Schwerdt J, Lin L, Ting PC, Zhu X, Aslanian R, Piwinski JJ, Xiao L, Prelusky D, Wu P, Zhang J, Zhang X, Celly CS, Minnicozzi M, Billah M, Wang P (2007) Discovery of a highly potent series of oxazole-based phosphodiesterase 4 inhibitors. Bioorg Med Chem Lett 17(18):5150–5154CrossRefGoogle Scholar
  28. 28.
    Zheng S, Kaur G, Wang H, Li M, Macnaughtan M, Yang X, Reid S, Prestegard J, Wang B, Ke H (2008) Design, synthesis, and structure-activity relationship, molecular modeling, and NMR studies of a series of phenyl alkyl ketones as highly potent and selective phosphodiesterase-4 inhibitors. J Med Chem 51(24):7673–7688CrossRefGoogle Scholar
  29. 29.
    Guay D, Boulet L, Friesen RW, Girard M, Hamel P, Huang Z, Laliberte F, Laliberte S, Mancini JA, Muise E, Pon D, Styhler A (2008) Optimization and structure-activity relationship of a series of 1-phenyl-1,8-naphthyridin-4-one-3-carboxamides: identification of MK-0873, A potent and effective PDE4 inhibitor. Bioorg Med Chem Lett 18(20):5554–5558CrossRefGoogle Scholar
  30. 30.
    Xu RX, Rocque WJ, Lambert MH, Vanderwall DE, Luther MA, Nolte RT (2004) Crystal structures of the catalytic domain of phosphodiesterase 4B complexed with AMP, 8-Br-AMP, and rolipram. J Mol Biol 337(2):355–365CrossRefGoogle Scholar
  31. 31.
    Salter EA, Wierzbicki A (2007) The mechanism of cyclic nucleotide hydrolysis in the phosphodiesterase catalytic site. J Phys Chem B 111(17):4547–4552CrossRefGoogle Scholar
  32. 32.
    Chen X, Zhao XY, Xiong Y, Liu JJ, Zhan CG (2011) Fundamental reaction pathway and free energy profile for hydrolysis of intracellular second messenger adenosine 3 ’,5 ’-cyclic monophosphate (cAMP) catalyzed by phosphodiesterase-4. J Phys Chem B 115(42):208–212, 219CrossRefGoogle Scholar
  33. 33.
    Dym O, Xenarios I, Ke H, Colicelli J (2002) Molecular docking of competitive phosphodiesterase inhibitors. Mol Pharm 61(1):20–25CrossRefGoogle Scholar
  34. 34.
    Oliveira FG, Sant’Anna CMR, Caffarena ER, Dardenne LE, Barreiro EJ (2006) Molecular docking study and development of an empirical binding free energy model for phosphodiesterase 4 inhibitors. Biorg Med Chem 14(17):6001–6011CrossRefGoogle Scholar
  35. 35.
    Chen Z, Tian G, Wang Z, Jiang H, Shen J, Zhu W (2010) Multiple pharmacophore models combined with molecular docking: a reliable way for efficiently identifying novel PDE4 inhibitors with high structural diversity. J Chem Inf Model 50(4):615–625CrossRefGoogle Scholar
  36. 36.
    Niu M, Dong F, Tang S, Fida G, Qin J, Liu K, Gao W, Gu Y (2013) Pharmacophore Modeling and virtual screening for the discovery of new type 4 cAMP phosphodiesterase (PDE4) inhibitors. PloS ONE 8(12):e82, 360CrossRefGoogle Scholar
  37. 37.
    Zhao P, Chen SK, Cai YH, Lu X, Li Z, Cheng YK, Zhang C, Hu X, He X, Luo HB (2013) The molecular basis for the inhibition of phosphodiesterase-4D by three natural resveratrol analogs. Isolation, molecular docking, molecular dynamics simulations, binding free energy, and bioassay. Biochim et Biophys Acta 1834(10):2089–2096. doi: 10.1016/j.bbapap.2013.07.004 CrossRefGoogle Scholar
  38. 38.
    Voet D, Voet JG (1990) Biochemistry. Wiley, New YorkGoogle Scholar
  39. 39.
    Yung-Chi C, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2 CrossRefGoogle Scholar
  40. 40.
    Zwanzig RW (1954) High-temperature equation of state by a perturbation method. 1. Nonpolar gases. J Chem Phys 22(8):1420–1426CrossRefGoogle Scholar
  41. 41.
    Lybrand TP, McCammon JA, Wipff G (1986) Theoretical calculation of relative binding-affinity in host guest systems. Proc Natl Acad Sci USA 83(4):833–835CrossRefGoogle Scholar
  42. 42.
    Aqvist J, Medina C, Samuelsson JE (1994) New method for predicting binding-affinity in computer-aided drug design. Protein Eng 7(3):385–391CrossRefGoogle Scholar
  43. 43.
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897CrossRefGoogle Scholar
  44. 44.
    Wang JM, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of Efavirenz by docking and MM-PBSA. J Am Chem Soc 123(22):5221–5230CrossRefGoogle Scholar
  45. 45.
    Beveridge DL, Dicapua FM (1989) Free-energy via molecular simulation - applications to chemical and biomolecular systems. Annu Rev Biophys Biophys Chem 18:431–492CrossRefGoogle Scholar
  46. 46.
    Chipot C, Rozanska X, Dixit SB (2005) Can free energy calculations be fast and accurate at the same time?: binding of low-affinity, non-peptide inhibitors to the SH2 domain of the SRC protein. J Comput Aided Mol Des 19(11):765–770CrossRefGoogle Scholar
  47. 47.
    Genheden S, Ryde U (2010) How to obtain statistically converged MM/GBSA results. J Comput Chem 31(4):837–846Google Scholar
  48. 48.
    Dal Piaz V, Giovannoni MP, Castellana C, Palacios JM, Beleta J, Domenech T, Segarra V (1998) Heterocyclic-fused 3(2H)-pyridazinones as potent and selective PDE IV inhibitors: further structure-activity relationships and molecular modelling studies. Eur J Med Chem 33(10):789–797CrossRefGoogle Scholar
  49. 49.
    Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:D198–D201CrossRefGoogle Scholar
  50. 50.
    Schrödinger, LLC (2015) The PyMOL molecular graphics system, version 1.8Google Scholar
  51. 51.
    Hersperger R, Bray-French K, Mazzoni L, Muller T (2000) Palladium-catalyzed cross-coupling reactions for the synthesis of 6,8-disubstituted 1,7-naphthyridines: a novel class of potent and selective phosphodiesterase type 4D inhibitors. J Med Chem 43(4):675–682CrossRefGoogle Scholar
  52. 52.
    Wang H, Peng MS, Chen Y, Geng J, Robinson H, Houslay MD, Cai J, Ke H (2007) Structures of the four subfamilies of phosphodiesterase-4 provide insight into the selectivity of their inhibitors. Biochem J 408:193–201CrossRefGoogle Scholar
  53. 53.
    The UniProt Consortium (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42(Database issue):D191–D198. doi: 10.1093/nar/gkt1140 Google Scholar
  54. 54.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791CrossRefGoogle Scholar
  55. 55.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang JM, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012CrossRefGoogle Scholar
  56. 56.
    Case D, Darden T, Cheatham TE I, Simmerling C, Wang J, Duke R, Luo R, Walker R, Zhang W, Merz K, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz A, Kolossvry I, Wong K, Paesani F, Vanicek J, Wolf R, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe D, Mathews D, Seetin M, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman P (2012) AMBER 12. University of California, San FransiscoGoogle Scholar
  57. 57.
    Sondergaard CR, Olsson MHM, Rostkowski M, Jensen JH (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pK(a) values. J Chem Theory Comput 7(7):2284–2295CrossRefGoogle Scholar
  58. 58.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRefGoogle Scholar
  59. 59.
    Goetz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC (2012) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J Chem Theory Comput 8(5):1542–1555CrossRefGoogle Scholar
  60. 60.
    Salomon-Ferrer R, Goetz AW, Poole D, Le Grand S, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald. J Chem Theory Comput 9(9):3878–3888CrossRefGoogle Scholar
  61. 61.
    Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2005) Development and testing of a general AMBER force field. J Comput Chem 26(1):114CrossRefGoogle Scholar
  62. 62.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical—integration of cartesian equations of motion of a system with constraints—molecular-dynamics of N-alkanes. J Comput Phys 23(3):327–341CrossRefGoogle Scholar
  63. 63.
    Ugur I, Marion A, Aviyente V, Monard G (2015) Why does Asn71 deamidate faster than Asn15 in the enzyme triosephosphate isomerase?: answers from microsecond molecular dynamics simulation and QM/MM free energy calculations. Biochemistry 54:1429–1439. doi: 10.1021/bi5008047 CrossRefGoogle Scholar
  64. 64.
    Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321. doi: 10.1021/ct300418h CrossRefGoogle Scholar
  65. 65.
    Hawkins G, Cramer C, Truhlar D (1995) Pairwise solute descreening of solute charges from a dielectric medium. Chem Phys Lett 246:122–129CrossRefGoogle Scholar
  66. 66.
    Hawkins G, Cramer C, Truhlar D (1996) Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J Phys Chem 100:19,824–19,839CrossRefGoogle Scholar
  67. 67.
    Tsui V, Case D (2001) Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers (Nucl Acid Sci) 56:275–291CrossRefGoogle Scholar
  68. 68.
    Onufriev A, Bashford D, Case D (2004) Exploring protein native states and large-scale conformational changes with a modified generalized Born model. Proteins 55:383–394CrossRefGoogle Scholar
  69. 69.
    Mongan J, Simmerling C, McCammon JA, Case DA, Onufriev A (2007) Generalized Born with a simple, robust molecular volume correction. J Chem Theory Comput 3:156–169CrossRefGoogle Scholar
  70. 70.
    Nguyen H, Roe DR, Simmerling C (2013) Improved generalized born solvent model parameters for protein simulations. J Chem Theory Comput 9(4):2020–2034CrossRefGoogle Scholar
  71. 71.
    Weiser J, Shenkin P, Still W (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Computat Chem 20:217–230CrossRefGoogle Scholar
  72. 72.
    Genheden S, Kuhn O, Mikulskis P, Hoffmann D, Ryde U (2012) The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. J Chem Inf Model 52(8):2079–2088. doi: 10.1021/ci3001919 CrossRefGoogle Scholar
  73. 73.
    Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51(1):69–82. doi: 10.1021/ci100275a CrossRefGoogle Scholar
  74. 74.
    Genheden S (2011) MM/GBSA and LIE estimates of host-guest affinities: dependence on charges and solvation model. J Comput Aided Mol Des 25(11):1085–1093. doi: 10.1007/s10822-011-9486-1 CrossRefGoogle Scholar
  75. 75.
    Genheden S, Ryde U (2011) Comparison of the efficiency of the LIE and MM/GBSA methods to calculate ligand-binding energies. J Chem Theory Comput 7(11):3768–3778. doi: 10.1021/ct200163c CrossRefGoogle Scholar
  76. 76.
    Hayes JM, Archontis G (2012) Molecular dynamics—Studies of synthetic and biological macromolecules, InTech, chap MM-GB(PB)SA calculations of protein-ligand binding free energiesGoogle Scholar
  77. 77.
    Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10(5):449–461. doi: 10.1517/17460441.2015.1032936 CrossRefGoogle Scholar
  78. 78.
    Nguyen H, Maier J, Huang H, Perrone V, Simmerling C (2014) Folding simulations for proteins with diverse topologies are accessible in days with a physics-based force field and implicit solvent. J Am Chem Soc 136(40):959–962. doi: 10.1021/ja5032776 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of ChemistryBoğaziçi UniversityBebekTurkey
  2. 2.Bioinformatics and GeneticKadir Has UniversityCibaliTurkey
  3. 3.Université de Lorraine, UMR 7565 SRSMCVandoeuvre-les-NancyFrance
  4. 4.CNRS, UMR 7565 SRSMCVandoeuvre-les-NancyFrance

Personalised recommendations