Journal of Computer-Aided Molecular Design

, Volume 31, Issue 4, pp 403–417 | Cite as

As-Rigid-As-Possible molecular interpolation paths

  • Minh Khoa NguyenEmail author
  • Léonard Jaillet
  • Stéphane Redon


This paper proposes a new method to generate interpolation paths between two given molecular conformations. It relies on the As-Rigid-As-Possible (ARAP) paradigm used in Computer Graphics to manipulate complex meshes while preserving their essential structural characteristics. The adaptation of ARAP approaches to the case of molecular systems is presented in this contribution. Experiments conducted on a large set of benchmarks show how such a strategy can efficiently compute relevant interpolation paths with large conformational rearrangements.


As-rigid-as-possible Morphing Interpolation path Molecular structures 



We would like to gratefully acknowledge funding from the European Research Council through the ERC Starting Grant No. 307629.


  1. 1.
    Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) Acta Crystallogr Sect D 58:899CrossRefGoogle Scholar
  2. 2.
    Allen F (2002) Acta Crystallogr Sect B-Struct Sci 58:380CrossRefGoogle Scholar
  3. 3.
    Yon J, Perahia D, Ghelis C (1998) Biochimie 80(1):33CrossRefGoogle Scholar
  4. 4.
    Kern D, Zuiderweg ER (2003) Curr Opin Struct Biol 13(6):748CrossRefGoogle Scholar
  5. 5.
    Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Academic press, San DiegoGoogle Scholar
  6. 6.
    Haile J (1993) Comput Phys 7(6):625CrossRefGoogle Scholar
  7. 7.
    Lei H, Duan Y (2007) Curr Opin Struct Biol 17(2):187CrossRefGoogle Scholar
  8. 8.
    Bernardi RC, Melo MC, Schulten K (2015) Biochim Biophys Acta (BBA)-Gener Subj 1850(5):872Google Scholar
  9. 9.
    C Dellago, PG Bolhuis (2008)Google Scholar
  10. 10.
    Kim MK, Jernigan RL, Chirikjian GS (2002) Biophys J 83:1620–1630. doi: 10.1016/S0006-3495(02)73931-3
  11. 11.
    Kim MK, Chirikjian GS, Jernigan RL (2002) J Mol Graph Model 21:151–160. doi: 10.1016/S1093-3263(02)00143-2
  12. 12.
    Ahmed A, Gohlke H (2006) Proteins 63(4):1038–1051. doi: 10.1002/prot.20907
  13. 13.
    Yang L, Song G, Jernigan RL (2007) Biophys J 93(3):920–929. doi: 10.1529/biophysj.106.095927
  14. 14.
    Chou KC (1988) Biophys Chemistry 30(1):3CrossRefGoogle Scholar
  15. 15.
    Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113(22):9901CrossRefGoogle Scholar
  16. 16.
    Weinan E, Ren W, Vanden-Eijnden E (2002) Phys Rev B 66(5):052301Google Scholar
  17. 17.
    Amato NM, Song G (2002) J Comput Biol 9:149–168. doi: 10.1089/10665270252935395
  18. 18.
    Apaydin MS, Brutlag DL, Guestrin C, Hsu D, Latombe JC, Varma C (2003) J Comput Biol 10:257–281. doi: 10.1089/10665270360688011
  19. 19.
    Raveh B, Enosh A, Schueler-Furma O, Halperin D (2009) PLoS Comput Biol 5:e1000295. doi: 10.1371/journal.pcbi.1000295
  20. 20.
    Jaillet L, Corcho FJ, Pérez JJ, Cortés J (2011) J Comput Chem 32(16):3464CrossRefGoogle Scholar
  21. 21.
    Morphs page on proteopedia
  22. 22.
    Castellana NE, Lushnikov A, Rotkiewicz P, Sefcovic N, Pevzner PA, Godzik A, Vyatkina K (2013) Algorithms Mol Biol 8(1):1. doi: 10.1186/1748-7188-8-19
  23. 23.
    Weiss DR, Levitt M (2009) J Mol Biol 385(2):665CrossRefGoogle Scholar
  24. 24.
    Krebs WG, Gerstein M (2000) Nucl Acids Res 28:1665–1675. doi: 10.1093/nar/28.8.1665
  25. 25.
    Wells S, Menor S, Hespenheide B, Thorpe M (2005) Phys Biol 2(4):S127CrossRefGoogle Scholar
  26. 26.
    Farrell DW, Speranskiy K, Thorpe M (2010) Proteins: structure. Funct Bioinform 78(14):2908CrossRefGoogle Scholar
  27. 27.
    Alexa M, Cohen-Or D, Levin D, in Proceedings of the 27th annual conference on Computer graphics and interactive techniques (ACM Press/Addison-Wesley Publishing Co., New York 2000), pp. 157–164Google Scholar
  28. 28.
    J Choi, A Szymczak (2003)Google Scholar
  29. 29.
    Igarashi T, Moscovich T, Hughes JF (2005) ACM Trans Gr (TOG) 24(3):1134CrossRefGoogle Scholar
  30. 30.
    Guo H, Fu X, Chen F, Yang H, Wang Y, Li H (2008) J Visual Commun Image Represent 19(4):245CrossRefGoogle Scholar
  31. 31.
    Baxter W, Barla P,Anjyo KI, in Proceedings of the 6th international symposium on Non-photorealistic animation and rendering (ACM, 2008), pp. 59–64Google Scholar
  32. 32.
    Sorkine O, Alexa M, in Symposium on Geometry processing, vol. 4 (2007), vol. 4Google Scholar
  33. 33.
    Cuno A,  Esperança C, Oliveira A, Cavalcanti PR, in Proceedings of the 27th computer graphics international conference (2007), pp. 115–122Google Scholar
  34. 34.
     Borosán P, Howard R, Zhang S, Nealen A, in Proc. of Eurographics, vol. 2010 (2010)Google Scholar
  35. 35.
    Zollhöfer M, Sert E, Greiner G, Süßmuth J, in Eurographics (Short Papers) (2012), pp. 85–88Google Scholar
  36. 36.
    Chao I, Pinkall U, Sanan P, Schröder P, in ACM Transactions on Graphics (TOG), vol. 29 (ACM, 2010), vol. 29, p. 38Google Scholar
  37. 37.
    Levi Z, Gotsman C (2015) Visualization and computer graphics. IEEE Trans 21(2):264Google Scholar
  38. 38.
    Liu YS, Yan HB, Martin RR (2011) J Comput Sci Technol 26(3):548CrossRefGoogle Scholar
  39. 39.
    Kilian M, Mitra NJ, Pottmann H (2007) ACM Trans Gr (TOG) 26(3):64CrossRefGoogle Scholar
  40. 40.
    Zhang Z, Li G, Lu H, Ouyang Y, Yin M, Xian C (2015) Comput Gr 46:244CrossRefGoogle Scholar
  41. 41.
    Liu L, Zhang L, Xu Y, Gotsman C, Gortler SJ, in Computer Graphics Forum, vol. 27 (Wiley Online Library, 2008), vol. 27, pp. 1495–1504Google Scholar
  42. 42.
    Yan HB, Hu SM, Martin RR (2007) J Comput Sci Technol 22(1):147CrossRefGoogle Scholar
  43. 43.
    Huang J, Tong Y, Zhou K, Bao H, Desbrun M (2011) Visualization and computer graphics. IEEE Trans 17(7):983Google Scholar
  44. 44.
    Sorkine O, Cohen-Or D, Lipman Y, Alexa M, Rössl C, Seidel HP, in Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing (ACM, 2004), pp. 175–184Google Scholar
  45. 45.
    Lipman Y, Sorkine O, Levin D, Cohen-Or D (2005) ACM Trans Gr 24(3):479. doi: 10.1145/1073204.1073217
  46. 46.
    Xu D, Zhang H, Wang Q, Bao H (2006) Graphical Models 68(3):268Google Scholar
  47. 47.
     Botsch M, Pauly M, Gross MH, Kobbelt L (2006) in Symposium on Geometry Processing, EPFL-CONF-149310, pp. 11–20Google Scholar
  48. 48.
    Paries N, Degener P, Klein R (2007) in Computer Graphics and Applications,. PG’07. 15th Pacific Conference on (IEEE, 2007), pp. 461–464Google Scholar
  49. 49.
    Botsch M, Sorkine O (2008) Visualization and computer graphics. IEEE Trans 14(1):213Google Scholar
  50. 50.
    Edgar RC (2004) BMC Bioinform 5(1):1CrossRefGoogle Scholar
  51. 51.
    Liu P, Agrafiotis DK, Theobald DL (2010) J Comput Chem 31(7):1561Google Scholar
  52. 52.
    Horn BK (1987) JOSA A 4(4):629CrossRefGoogle Scholar
  53. 53.
    Kearsley SK (1989) Acta Crystallogr Sect A 45(2):208CrossRefGoogle Scholar
  54. 54.
    Shoemake K (1985) in ACM SIGGRAPH computer graphics, vol. 19 (ACM, 1985), vol. 19, pp. 245–254Google Scholar
  55. 55.
    Samson software for adaptive modeling and simulation of nanosystems
  56. 56.
    Guennebaud G,  Jacob B et al. Eigen v3. (2010)Google Scholar
  57. 57.
    Zhang M, Kavraki LE (2002) J Chem Inf Comput Sci 42(1):64CrossRefGoogle Scholar
  58. 58.
    Schlick T (2010) Molecular modeling and simulation: an interdisciplinary guide: an interdisciplinary guide, vol. 21, Springer, NewYorkGoogle Scholar
  59. 59.
    Shehu A, Kavraki LE (2012) Entropy 14(2):252CrossRefGoogle Scholar
  60. 60.
    Kaji S (2016) in Mathematical Progress in Expressive Image Synthesis III (Springer), pp. 7–19Google Scholar
  61. 61.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26(16):1781CrossRefGoogle Scholar
  62. 62.
    Torrie GM, Valleau JP (1977) J Comput Phys 23(2):187CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Inria Grenoble Rhône-AlpesGrenobleFrance
  2. 2.Laboratoire Jean KuntzmannGrenobleFrance

Personalised recommendations