Journal of Computer-Aided Molecular Design

, Volume 31, Issue 3, pp 267–273 | Cite as

Computational chemistry at Janssen

  • Herman van Vlijmen
  • Renee L. Desjarlais
  • Tara Mirzadegan


Computer-aided drug discovery activities at Janssen are carried out by scientists in the Computational Chemistry group of the Discovery Sciences organization. This perspective gives an overview of the organizational and operational structure, the science, internal and external collaborations, and the impact of the group on Drug Discovery at Janssen.


Computer aided drug design Computational chemistry Drug discovery 


  1. 1.
    2015 Global 2000: The World’s Largest Drug And Biotech Companies (2015) Forbes. Accessed 29 Oct 2016
  2. 2.
    Taking Flight: Pharm Exec’s Top 50 Pharma Companies (2015) Accessed 29 Oct 2016
  3. 3. Accessed 29 Oct 2016
  4. 4. Accessed 29 Oct 2016
  5. 5.
    Hack MD, Rassokhin DN, Buyck C, Seierstad M, Skalkin A, ten Holte P, Jones TK, Mirzadegan T, Agrafiotis DK (2011) Library enhancement through the wisdom of crowds. J Chem Inf Model 51:3275–3286CrossRefGoogle Scholar
  6. 6.
    Jacoby E, Tresadern G, Bembenek S, Wroblowski B, Buyck C, Neefs JM, Rassokhin D, Poncelet A, Hunt J, van Vlijmen H (2015) Extending kinome coverage by analysis of kinase inhibitor broad profiling data. Drug Discov Today 20:652–658CrossRefGoogle Scholar
  7. 7.
    Papadatos G, Davies M, Dedman N, Chambers J, Gaulton A, Siddle J, Koks R, Irvine SA, Pettersson J, Goncharoff N, Hersey A, Overington JP (2016) SureChEMBL: A large-scale, chemically annotated patent document database. Nucleic Acids Res 44(D1):D1220–D1228CrossRefGoogle Scholar
  8. 8.
    Open PHACTS website. Accessed 29 Oct 2016
  9. 9.
    Linked data, wikipedia. Accessed 29 Oct 2016
  10. 10.
    Ratnam J, Zdrazil B, Digles D, Cuadrado-Rodriguez E, Neefs JM, Tipney H, Siebes R, Waagmeester A, Bradley G, Chau CH, Richter L, Brea J, Evelo CT, Jacoby E, Senger S, Loza MI, Ecker GF, Chichester C (2014) The application of the open pharmacological concepts triple store (Open PHACTS) to support drug discovery research. PLoS One 9:e115460CrossRefGoogle Scholar
  11. 11.
    Agrafiotis DK, Alex S, Dai H, Derkinderen A, Farnum M, Gates P, Izrailev S, Jaeger EP, Konstant P, Leung A, Lobanov VS, Marichal P, Martin D, Rassokhin DN, Shemanarev M, Skalkin A, Stong J, Tabruyn T, Vermeiren M, Wan J, Xu XY, Yao X (2007) Advanced biological and chemical discovery (ABCD): Centralizing discovery knowledge in an inherently decentralized world. J Chem Inf Model 47:1999–2014CrossRefGoogle Scholar
  12. 12.
    Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: An update. Nucleic Acids Res 42:1083–1090CrossRefGoogle Scholar
  13. 13.
    Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668–D672CrossRefGoogle Scholar
  14. 14.
    GOSTAR database, GVK Biosciences Private Limited, Hyderabad India. Accessed 29 Oct 2016
  15. 15. Accessed 29 Oct 2016
  16. 16.
    Euretos corporate website. Accessed 29 Oct 2016
  17. 17.
    Simm J, Arany A, Zakeri P, Haber T, Wegner JK, Chupakhin V, Ceulemans H, Moreau Y (2015) Macau: Scalable Bayesian multi-relational factorization with side information using MCMC. arXiv:1509.04610v2 [stat.ML]. Accessed 29 Oct 2016
  18. 18.
    Unterthiner T, Mayr, A, Klambauer, G, Steijaert, M, Wegner, JK, Ceulemans, H, Hochreiter, S (2014) Deep learning as an opportunity in virtual screening. Advances in neural information processing systems, 27. Accessed 29 Oct 2016
  19. 19.
    Damm-Ganamet KL, Bembenek SD, Venable JW, Castro GG, Mangelschots L, Peeters DC, Mcallister HM, Edwards JP, Disepio D, Mirzadegan T (2016) A prospective virtual screening study: Enriching hit rates and designing focus libraries to find inhibitors of PI3Kδ and PI3Kγ. J Med Chem 59:4302–4313CrossRefGoogle Scholar
  20. 20.
    Kuppens T, Bultinck P, Langenaeker W (2004) Determination of absolute configuration via vibrational circular dichroism. Drug Discov Today Technol 1:269–275CrossRefGoogle Scholar
  21. 21.
    Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner RA, Abel R (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137:2695–2703CrossRefGoogle Scholar
  22. 22.
    Ciordia M, Pérez-Benito L, Delgado F, Trabanco AA, Tresadern G (2016) Application of Free Energy Perturbation for the Design of BACE1 Inhibitors. J Chem Inf Model 56:1856–1871CrossRefGoogle Scholar
  23. 23. Accessed 29 Oct 2016
  24. 24.
  25. 25.
    Moriaud F, Doppelt-Azeroual O, Martin L, Oguievetskaia K, Koch K, Vorotyntsev A, Adcock SA, Delfaud F (2009) Computational fragment-based approach at PDB scale by protein local similarity. J Chem Inf Model 49:280–294CrossRefGoogle Scholar
  26. 26.
    Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169CrossRefGoogle Scholar
  27. 27.
    Case DA, Betz RM, Botello-Smith W, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej B, Mermelstein D, Merz KM, Monard G, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Sagui C, Simmerling CL, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2016) AMBER 2016. University of California, San FranciscoGoogle Scholar
  28. 28.
    Boda K, Seidel T, Gasteiger J (2007) Structure and reaction based evaluation of synthetic accessibility. J Comput Aided Mol Des 21:311–325CrossRefGoogle Scholar
  29. 29.
    Proasis software, Desert Scientific, Norwest, Australia. Accessed 29 Oct 2016
  30. 30.
    Kinase KnowledgeBase, Eidogen-Sertanty, Oceanside CA. Accessed 29 Oct 2016
  31. 31.
    StarDrop, Optibrium Ltd, Cambridge UK. Accessed 29 Oct 2016
  32. 32.
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748CrossRefGoogle Scholar
  33. 33.
    Hendlich M, Bergner A, Günther J, Klebe G (2003) Relibase—design and development of a database for comprehensive analysis of protein–ligand interactions. J Mol Biol 326:607–620CrossRefGoogle Scholar
  34. 34.
    Kolpak J, Connolly PJ, Lobanov VS, Agrafiotis DK (2009) Enhanced SAR maps: Expanding the data rendering capabilities of a popular medicinal chemistry tool. J Chem Inf Model 49:2221–2230CrossRefGoogle Scholar
  35. 35.
    Schrödinger web site news (2011) Accessed 29 Oct 2016
  36. 36.
    Flanders innovation & entrepreneurship. Accessed 29 Oct 2016
  37. 37.
    The innovative medicines initiative. Accessed 29 Oct 2016
  38. 38.
    HORIZON 2020: The EU framework programme for research and innovation. Accessed 29 Oct 2016
  39. 39.
    European Lead Factory. Accessed 29 Oct 2016
  40. 40.
    Kinetics for drug discovery. Accessed 29 Oct 2016
  41. 41.
    Structural genomics consortium. Accessed 29 Oct 2016
  42. 42.
    Phenomics discovery initiative. Accessed 29 Oct 2016
  43. 43.
    Zhang X, Song F, Kuo GH, Xiang A, Gibbs AC, Abad MC, Sun W, Kuo LC, Sui Z (2011) Optimization of a pyrazole hit from FBDD into a novel series of indazoles as ketohexokinase inhibitors. Bioorg Med Chem Lett 21:4762–4767CrossRefGoogle Scholar
  44. 44.
    Desjarlais RL (2011) Using computational techniques in fragment-based drug discovery. Methods Enzymol 493:137–155CrossRefGoogle Scholar
  45. 45.
    Keith JM, Tichenor MS, Apodaca RL, Xiao W, Jones WM, Seierstad M, Pierce JM, Palmer JA, Webb M, Karbarz MJ, Scott BP, Wilson SJ, Wennerholm ML, Rizzolio M, Rynberg R, Chaplan SR, Breitenbucher JG (2016) The SAR of brain penetration for a series of heteroaryl urea FAAH inhibitors. Bioorg Med Chem Lett 26:3109–3114CrossRefGoogle Scholar
  46. 46.
    Blevitt JM, Hack MD, Herman K, Chang L, Keith JM, Mirzadegan T, Rao NL, Lebsack AD, Milla ME (2016) A single amino acid difference between mouse and human 5-lipoxygenase activating protein (FLAP) explains the speciation and differential pharmacology of novel FLAP inhibitors. J Biol Chem 291:12724–12731CrossRefGoogle Scholar
  47. 47.
    Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S (2014) Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase. J Med Chem 57:1880–1892CrossRefGoogle Scholar
  48. 48.
    DesJarlais R, Tummino PJ (2016) Role of histone-modifying enzymes and their complexes in regulation of chromatin biology. BioChemistry 55:1584–1599CrossRefGoogle Scholar
  49. 49.
    Battles MB, Langedijk JP, Furmanova-Hollenstein P, Chaiwatpongsakorn S, Costello HM, Kwanten L, Vranckx L, Vink P, Jaensch S, Jonckers TH, Koul A, Arnoult E, Peeples ME, Roymans D, McLellan JS (2015) Molecular mechanism of respiratory syncytial virus fusion inhibitors. Nat Chem Biol 12:87–93CrossRefGoogle Scholar
  50. 50.
    Rombouts FJ, Tresadern G, Delgado O, Martínez-Lamenca C, Van Gool M, García-Molina A, Alonso de Diego SA, Oehlrich D, Prokopcova H, Alonso JM, Austin N, Borghys H, Van Brandt S, Surkyn M, De Cleyn M, Vos A, Alexander R, Macdonald G, Moechars D, Gijsen H, Trabanco AA (2015) 1,4-Oxazine β-secretase 1 (BACE1) inhibitors: From hit generation to orally bioavailable brain penetrant leads. J Med Chem 58:8216–8235CrossRefGoogle Scholar
  51. 51.
    Bosc N, Wroblowski B, Aci-Sèche S, Meyer C, Bonnet P (2015) A proteometric analysis of human kinome: Insight into discriminant conformation-dependent residues. ACS Chem Biol 10:2827–2840CrossRefGoogle Scholar
  52. 52.
    Alonso A, Milanzi E, Molenberghs G, Buyck C, Bijnens L (2015) Impact of selection bias on the evaluation of clusters of chemical compounds in the drug discovery process. Pharm Stat 14:129–138CrossRefGoogle Scholar
  53. 53.
    Pande V (2016) Understanding the complexity of epigenetic target space. J Med Chem 59:1299–1307CrossRefGoogle Scholar
  54. 54.
    Koul A, Vranckx L, Dhar N, Göhlmann HW, Özdemir E, Neefs JM, Schulz M, Lu P, Mørtz E, McKinney JD, Andries K, Bald D (2014) Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat Commun 5:3369CrossRefGoogle Scholar
  55. 55.
    Tresadern G, Cid JM, Trabanco AA (2014) QSAR design of triazolopyridine mGlu2 receptor positive allosteric modulators. J Mol Graph Model 53:82–91CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Herman van Vlijmen
    • 1
  • Renee L. Desjarlais
    • 2
  • Tara Mirzadegan
    • 3
  1. 1.Discovery Sciences, Janssen Research and DevelopmentBeerseBelgium
  2. 2.Discovery Sciences, Janssen Research and DevelopmentSpring HouseUSA
  3. 3.Discovery Sciences, Janssen Research and DevelopmentLa JollaUSA

Personalised recommendations